A Course in Time Series Analysis

Download A Course in Time Series Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118031229
Total Pages : 494 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis A Course in Time Series Analysis by : Daniel Peña

Download or read book A Course in Time Series Analysis written by Daniel Peña and published by John Wiley & Sons. This book was released on 2011-01-25 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include: Contributions from eleven of the worldâ??s leading figures in time series Shared balance between theory and application Exercise series sets Many real data examples Consistent style and clear, common notation in all contributions 60 helpful graphs and tables Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis. An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.

Missing Observations and Additive Outliers in Time Series Models

Download Missing Observations and Additive Outliers in Time Series Models PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 64 pages
Book Rating : 4.3/5 ( download)

DOWNLOAD NOW!


Book Synopsis Missing Observations and Additive Outliers in Time Series Models by : Agustín Maravall

Download or read book Missing Observations and Additive Outliers in Time Series Models written by Agustín Maravall and published by . This book was released on 1996 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Forecasting, Structural Time Series Models and the Kalman Filter

Download Forecasting, Structural Time Series Models and the Kalman Filter PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107717140
Total Pages : 578 pages
Book Rating : 4.1/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Forecasting, Structural Time Series Models and the Kalman Filter by : Andrew C. Harvey

Download or read book Forecasting, Structural Time Series Models and the Kalman Filter written by Andrew C. Harvey and published by Cambridge University Press. This book was released on 1990-02-22 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Andrew Harvey sets out to provide a unified and comprehensive theory of structural time series models. Unlike the traditional ARIMA models, structural time series models consist explicitly of unobserved components, such as trends and seasonals, which have a direct interpretation. As a result the model selection methodology associated with structural models is much closer to econometric methodology. The link with econometrics is made even closer by the natural way in which the models can be extended to include explanatory variables and to cope with multivariate time series. From the technical point of view, state space models and the Kalman filter play a key role in the statistical treatment of structural time series models. The book includes a detailed treatment of the Kalman filter. This technique was originally developed in control engineering, but is becoming increasingly important in fields such as economics and operations research. This book is concerned primarily with modelling economic and social time series, and with addressing the special problems which the treatment of such series poses. The properties of the models and the methodological techniques used to select them are illustrated with various applications. These range from the modellling of trends and cycles in US macroeconomic time series to to an evaluation of the effects of seat belt legislation in the UK.

Time Series Analysis

Download Time Series Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111867491X
Total Pages : 712 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Time Series Analysis by : George E. P. Box

Download or read book Time Series Analysis written by George E. P. Box and published by John Wiley & Sons. This book was released on 2015-06-02 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Fourth Edition "The book follows faithfully the style of the original edition. The approach is heavily motivated by real-world time series, and by developing a complete approach to model building, estimation, forecasting and control." —Mathematical Reviews Bridging classical models and modern topics, the Fifth Edition of Time Series Analysis: Forecasting and Control maintains a balanced presentation of the tools for modeling and analyzing time series. Also describing the latest developments that have occurred in the field over the past decade through applications from areas such as business, finance, and engineering, the Fifth Edition continues to serve as one of the most influential and prominent works on the subject. Time Series Analysis: Forecasting and Control, Fifth Edition provides a clearly written exploration of the key methods for building, classifying, testing, and analyzing stochastic models for time series and describes their use in five important areas of application: forecasting; determining the transfer function of a system; modeling the effects of intervention events; developing multivariate dynamic models; and designing simple control schemes. Along with these classical uses, the new edition covers modern topics with new features that include: A redesigned chapter on multivariate time series analysis with an expanded treatment of Vector Autoregressive, or VAR models, along with a discussion of the analytical tools needed for modeling vector time series An expanded chapter on special topics covering unit root testing, time-varying volatility models such as ARCH and GARCH, nonlinear time series models, and long memory models Numerous examples drawn from finance, economics, engineering, and other related fields The use of the publicly available R software for graphical illustrations and numerical calculations along with scripts that demonstrate the use of R for model building and forecasting Updates to literature references throughout and new end-of-chapter exercises Streamlined chapter introductions and revisions that update and enhance the exposition Time Series Analysis: Forecasting and Control, Fifth Edition is a valuable real-world reference for researchers and practitioners in time series analysis, econometrics, finance, and related fields. The book is also an excellent textbook for beginning graduate-level courses in advanced statistics, mathematics, economics, finance, engineering, and physics.

Missing Observations, Additive Outliers and Inverse Autocorrelation Function

Download Missing Observations, Additive Outliers and Inverse Autocorrelation Function PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 56 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Missing Observations, Additive Outliers and Inverse Autocorrelation Function by : Agustín Maravall

Download or read book Missing Observations, Additive Outliers and Inverse Autocorrelation Function written by Agustín Maravall and published by . This book was released on 1989 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Identification of Outliers

Download Identification of Outliers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401539944
Total Pages : 194 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Identification of Outliers by : D. Hawkins

Download or read book Identification of Outliers written by D. Hawkins and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of outliers is one of the oldest in statistics, and during the last century and a half interest in it has waxed and waned several times. Currently it is once again an active research area after some years of relative neglect, and recent work has solved a number of old problems in outlier theory, and identified new ones. The major results are, however, scattered amongst many journal articles, and for some time there has been a clear need to bring them together in one place. That was the original intention of this monograph: but during execution it became clear that the existing theory of outliers was deficient in several areas, and so the monograph also contains a number of new results and conjectures. In view of the enormous volume ofliterature on the outlier problem and its cousins, no attempt has been made to make the coverage exhaustive. The material is concerned almost entirely with the use of outlier tests that are known (or may reasonably be expected) to be optimal in some way. Such topics as robust estimation are largely ignored, being covered more adequately in other sources. The numerous ad hoc statistics proposed in the early work on the grounds of intuitive appeal or computational simplicity also are not discussed in any detail.

Forecasting: principles and practice

Download Forecasting: principles and practice PDF Online Free

Author :
Publisher : OTexts
ISBN 13 : 0987507117
Total Pages : 380 pages
Book Rating : 4.9/5 (875 download)

DOWNLOAD NOW!


Book Synopsis Forecasting: principles and practice by : Rob J Hyndman

Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Nonlinear Time Series Analysis

Download Nonlinear Time Series Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521529020
Total Pages : 390 pages
Book Rating : 4.5/5 (29 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Time Series Analysis by : Holger Kantz

Download or read book Nonlinear Time Series Analysis written by Holger Kantz and published by Cambridge University Press. This book was released on 2004 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.

Computational Statistics

Download Computational Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662268116
Total Pages : 565 pages
Book Rating : 4.6/5 (622 download)

DOWNLOAD NOW!


Book Synopsis Computational Statistics by : Yadolah Dodge

Download or read book Computational Statistics written by Yadolah Dodge and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Role of the Computer in Statistics David Cox Nuffield College, Oxford OXIINF, U.K. A classification of statistical problems via their computational demands hinges on four components (I) the amount and complexity of the data, (il) the specificity of the objectives of the analysis, (iii) the broad aspects of the approach to analysis, (ill) the conceptual, mathematical and numerical analytic complexity of the methods. Computational requi rements may be limiting in (I) and (ill), either through the need for special programming effort, or because of the difficulties of initial data management or because of the load of detailed analysis. The implications of modern computational developments for statistical work can be illustrated in the context of the study of specific probabilistic models, the development of general statistical theory, the design of investigations and the analysis of empirical data. While simulation is usually likely to be the most sensible way of investigating specific complex stochastic models, computerized algebra has an obvious role in the more analyti cal work. It seems likely that statistics and applied probability have made insufficient use of developments in numerical analysis associated more with classical applied mathematics, in particular in the solution of large systems of ordinary and partial differential equations, integral equations and integra-differential equations and for the ¢raction of "useful" in formation from integral transforms. Increasing emphasis on models incorporating specific subject-matter considerations is one route to bridging the gap between statistical ana.

Time Series Analysis of Irregularly Observed Data

Download Time Series Analysis of Irregularly Observed Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468494031
Total Pages : 372 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Time Series Analysis of Irregularly Observed Data by : E. Parzen

Download or read book Time Series Analysis of Irregularly Observed Data written by E. Parzen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the support of the Office of Naval Research Program on Statistics and Probability (Dr. Edward J. Wegman, Director), The Department of Statistics at Texas A&M University hosted a Symposium on Time Series Analysis of Irregularly Observed Data during the period February 10-13, 1983. The symposium aimed to provide a review of the state of the art, define outstanding problems for research by theoreticians, transmit to practitioners recently developed algorithms, and stimulate interaction between statisticians and researchers in subject matter fields. Attendance was limited to actively involved researchers. This volume contains refereed versions of the papers presented at the Symposium. We would like to express our appreciation to the many colleagues and staff members whose cheerful help made the Symposium a successful happening which was enjoyed socially and intellectually by all participants. I would like to especially thank Dr. Donald W. Marquardt whose interest led me to undertake to organize this Symposium. This volume is dedicated to the world wide community of researchers who develop and apply methods of statistical analysis of time series. r:;) \J Picture Caption Participants in Symposium on Time Series Analysis of Irregularly Observed Data at Texas A&M University, College Station, Texas, February 10-13, 1983 First Row: Henry L. Gray, D. W. Marquardt, P. M. Robinson, Emanuel Parzen, Julia Abrahams, E. Masry, H. L. Weinert, R. H. Shumway.

Missing Observations in ARIMA Models

Download Missing Observations in ARIMA Models PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 52 pages
Book Rating : 4.3/5 ( download)

DOWNLOAD NOW!


Book Synopsis Missing Observations in ARIMA Models by : Víctor Gómez

Download or read book Missing Observations in ARIMA Models written by Víctor Gómez and published by . This book was released on 1997 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estudio sobre la estimación óptima de la pérdida de valor en modelos ARMA comparándolos con el mismo tipo de procedimientos en modelos ARIMA.

Analysis of Financial Time Series

Download Analysis of Financial Time Series PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471746185
Total Pages : 576 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Financial Time Series by : Ruey S. Tsay

Download or read book Analysis of Financial Time Series written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2005-09-15 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides statistical tools and techniques needed to understandtoday's financial markets The Second Edition of this critically acclaimed text provides acomprehensive and systematic introduction to financial econometricmodels and their applications in modeling and predicting financialtime series data. This latest edition continues to emphasizeempirical financial data and focuses on real-world examples.Following this approach, readers will master key aspects offinancial time series, including volatility modeling, neuralnetwork applications, market microstructure and high-frequencyfinancial data, continuous-time models and Ito's Lemma, Value atRisk, multiple returns analysis, financial factor models, andeconometric modeling via computation-intensive methods. The author begins with the basic characteristics of financialtime series data, setting the foundation for the three maintopics: Analysis and application of univariate financial timeseries Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text,including the addition of S-Plus® commands and illustrations.Exercises have been thoroughly updated and expanded and include themost current data, providing readers with more opportunities to putthe models and methods into practice. Among the new material addedto the text, readers will find: Consistent covariance estimation under heteroscedasticity andserial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing adeeper understanding of financial markets through firsthandexperience in working with financial data. This is an idealtextbook for MBA students as well as a reference for researchersand professionals in business and finance.

Time Series Modelling with Unobserved Components

Download Time Series Modelling with Unobserved Components PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482225018
Total Pages : 275 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Time Series Modelling with Unobserved Components by : Matteo M. Pelagatti

Download or read book Time Series Modelling with Unobserved Components written by Matteo M. Pelagatti and published by CRC Press. This book was released on 2015-07-28 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the unobserved components model (UCM) having many advantages over more popular forecasting techniques based on regression analysis, exponential smoothing, and ARIMA, the UCM is not well known among practitioners outside the academic community. Time Series Modelling with Unobserved Components rectifies this deficiency by giving a practical o

State-Space Methods for Time Series Analysis

Download State-Space Methods for Time Series Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 131536025X
Total Pages : 286 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis State-Space Methods for Time Series Analysis by : Jose Casals

Download or read book State-Space Methods for Time Series Analysis written by Jose Casals and published by CRC Press. This book was released on 2018-09-03 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.

Statistical Learning for Big Dependent Data

Download Statistical Learning for Big Dependent Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119417384
Total Pages : 562 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Statistical Learning for Big Dependent Data by : Daniel Peña

Download or read book Statistical Learning for Big Dependent Data written by Daniel Peña and published by John Wiley & Sons. This book was released on 2021-05-04 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource Statistical Learning with Big Dependent Data delivers a comprehensive presentation of the statistical and machine learning methods useful for analyzing and forecasting large and dynamically dependent data sets. The book presents automatic procedures for modelling and forecasting large sets of time series data. Beginning with some visualization tools, the book discusses procedures and methods for finding outliers, clusters, and other types of heterogeneity in big dependent data. It then introduces various dimension reduction methods, including regularization and factor models such as regularized Lasso in the presence of dynamical dependence and dynamic factor models. The book also covers other forecasting procedures, including index models, partial least squares, boosting, and now-casting. It further presents machine-learning methods, including neural network, deep learning, classification and regression trees and random forests. Finally, procedures for modelling and forecasting spatio-temporal dependent data are also presented. Throughout the book, the advantages and disadvantages of the methods discussed are given. The book uses real-world examples to demonstrate applications, including use of many R packages. Finally, an R package associated with the book is available to assist readers in reproducing the analyses of examples and to facilitate real applications. Analysis of Big Dependent Data includes a wide variety of topics for modeling and understanding big dependent data, like: New ways to plot large sets of time series An automatic procedure to build univariate ARMA models for individual components of a large data set Powerful outlier detection procedures for large sets of related time series New methods for finding the number of clusters of time series and discrimination methods , including vector support machines, for time series Broad coverage of dynamic factor models including new representations and estimation methods for generalized dynamic factor models Discussion on the usefulness of lasso with time series and an evaluation of several machine learning procedure for forecasting large sets of time series Forecasting large sets of time series with exogenous variables, including discussions of index models, partial least squares, and boosting. Introduction of modern procedures for modeling and forecasting spatio-temporal data Perfect for PhD students and researchers in business, economics, engineering, and science: Statistical Learning with Big Dependent Data also belongs to the bookshelves of practitioners in these fields who hope to improve their understanding of statistical and machine learning methods for analyzing and forecasting big dependent data.

Foundations of Computational Intelligence Volume 3

Download Foundations of Computational Intelligence Volume 3 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642010857
Total Pages : 531 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Computational Intelligence Volume 3 by : Ajith Abraham

Download or read book Foundations of Computational Intelligence Volume 3 written by Ajith Abraham and published by Springer. This book was released on 2009-05-01 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc. Global Optimization algorithms may be categorized into several types: Deterministic (example: branch and bound methods), Stochastic optimization (example: simulated annealing). Heuristics and meta-heuristics (example: evolutionary algorithms) etc. Recently there has been a growing interest in combining global and local search strategies to solve more complicated optimization problems. This edited volume comprises 17 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of global optimization. Besides research articles and expository papers on theory and algorithms of global optimization, papers on numerical experiments and on real world applications were also encouraged. The book is divided into 2 main parts.

Data Mining

Download Data Mining PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811516995
Total Pages : 266 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Data Mining by : Thuc D. Le

Download or read book Data Mining written by Thuc D. Le and published by Springer Nature. This book was released on 2019-11-22 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th Australasian Conference on Data Mining, AusDM 2019, held in Adelaide, SA, Australia, in December 2019. The 20 revised full papers presented were carefully reviewed and selected from 56 submissions. The papers are organized in sections on research track, application track, and industry showcase.