Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Maximum Likelihood Estimation Of Restricted Parameters
Download Maximum Likelihood Estimation Of Restricted Parameters full books in PDF, epub, and Kindle. Read online Maximum Likelihood Estimation Of Restricted Parameters ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Maximum Likelihood Estimation of Restricted Parameters by : H. D. Brunk
Download or read book Maximum Likelihood Estimation of Restricted Parameters written by H. D. Brunk and published by . This book was released on 1956 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Maximum Likelihood Estimation with Stata, Fourth Edition by : William Gould
Download or read book Maximum Likelihood Estimation with Stata, Fourth Edition written by William Gould and published by Stata Press. This book was released on 2010-10-27 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maximum Likelihood Estimation with Stata, Fourth Edition is written for researchers in all disciplines who need to compute maximum likelihood estimators that are not available as prepackaged routines. Readers are presumed to be familiar with Stata, but no special programming skills are assumed except in the last few chapters, which detail how to add a new estimation command to Stata. The book begins with an introduction to the theory of maximum likelihood estimation with particular attention on the practical implications for applied work. Individual chapters then describe in detail each of the four types of likelihood evaluator programs and provide numerous examples, such as logit and probit regression, Weibull regression, random-effects linear regression, and the Cox proportional hazards model. Later chapters and appendixes provide additional details about the ml command, provide checklists to follow when writing evaluators, and show how to write your own estimation commands.
Book Synopsis Restricted Parameter Space Estimation Problems by : Constance van Eeden
Download or read book Restricted Parameter Space Estimation Problems written by Constance van Eeden and published by Springer Science & Business Media. This book was released on 2006-12-15 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is addressed to anyone interested in the subject of restrict- parameter-space estimation, and in particular to those who want to learn, or bring their knowledge up to date, about (in)admissibility and minimaxity problems for such parameter spaces. The coverage starts in the early 1950s when the subject of inference for - stricted parameter spaces began to be studied and ends around the middle of 2004. It presents known, and also some new, results on (in)admissibility and minimaxity for nonsequential point estimation problems in restricted ?ni- dimensional parameter spaces. Relationships between various results are d- cussed and open problems are pointed out. Few complete proofs are given, but outlines of proofs are often supplied. The reader is always referred to the published papers and often results are clari?ed by presenting examples of the kind of problems an author solves, or of problems that cannot be solved by a particular result. The monograph does not touch on the subject of testing hypotheses in - stricted parameter spaces. The latest books on that subject are by Robertson, Wright and Dykstra (1988) and Akkerboom (1990), but many new results in that area have been obtained since. The monograph does have a chapter in which questions about the existence of maximum likelihood estimators are discussed. Some of their properties are also given there as well as some algorithms for computing them. Most of these results cannot be found in the Robertson, Wright, Dykstra book.
Book Synopsis Statistical Parametric Mapping: The Analysis of Functional Brain Images by : William D. Penny
Download or read book Statistical Parametric Mapping: The Analysis of Functional Brain Images written by William D. Penny and published by Elsevier. This book was released on 2011-04-28 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. - An essential reference and companion for users of the SPM software - Provides a complete description of the concepts and procedures entailed by the analysis of brain images - Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data - Stands as a compendium of all the advances in neuroimaging data analysis over the past decade - Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes - Structured treatment of data analysis issues that links different modalities and models - Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible
Book Synopsis Linear Models and Generalizations by : C. Radhakrishna Rao
Download or read book Linear Models and Generalizations written by C. Radhakrishna Rao and published by Springer Science & Business Media. This book was released on 2007-10-15 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised and updated with the latest results, this Third Edition explores the theory and applications of linear models. The authors present a unified theory of inference from linear models and its generalizations with minimal assumptions. They not only use least squares theory, but also alternative methods of estimation and testing based on convex loss functions and general estimating equations. Highlights of coverage include sensitivity analysis and model selection, an analysis of incomplete data, an analysis of categorical data based on a unified presentation of generalized linear models, and an extensive appendix on matrix theory.
Book Synopsis The Neurobiology of Schizophrenia by : Ted Abel
Download or read book The Neurobiology of Schizophrenia written by Ted Abel and published by Academic Press. This book was released on 2016-07-08 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Neurobiology of Schizophrenia begins with an overview of the various facets and levels of schizophrenia pathophysiology, ranging systematically from its genetic basis over changes in neurochemistry and electrophysiology to a systemic neural circuits level. When possible, the editors point out connections between the various systems. The editors also depict methods and research strategies used in the respective field. The individual backgrounds of the two editors promote a synthesis between basic neuroscience and clinical relevance. - Provides a comprehensive overview of neurobiological aspects of schizophrenia - Discusses schizophrenia at behavioral, cognitive, clinical, electrophysiological, molecular, and genetic levels - Edited by a translational researcher and a psychiatrist to promote synthesis between basic neuroscience and clinical relevance - Elucidates connections between the various systems depicted, when possible
Book Synopsis Genetics and Breeding for Disease Resistance of Livestock by : Aruna Pal
Download or read book Genetics and Breeding for Disease Resistance of Livestock written by Aruna Pal and published by Academic Press. This book was released on 2019-10-22 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetics and Breeding for Disease Resistance of Livestock is a solid resource that combines important information on the underlying genetic causes and governing factors for disease resistance in food animals and applications for breeding purposes. It describes genomics at each species level to help researchers and students understand disease resistance and immunology using genomics and its application in breeding for disease resistance. This useful reference makes it easy for readers to understand and undergo further research in immunology and disease resistance for livestock. It includes novel applications and research material that is ideal for students, teachers, academicians and researchers. - Presents basic principles and protocols to describe research methodologies through diagrammatic illustrations with figures, flow charts, examples, and references - Covers various disease occurrences in livestock and the methodologies available to identify the various pathogens responsible for these diseases - Includes advanced breeding techniques and practical applications
Book Synopsis Handbook of Latent Variable and Related Models by :
Download or read book Handbook of Latent Variable and Related Models written by and published by Elsevier. This book was released on 2011-08-11 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.
Book Synopsis Beyond Multiple Linear Regression by : Paul Roback
Download or read book Beyond Multiple Linear Regression written by Paul Roback and published by CRC Press. This book was released on 2021-01-14 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Book Synopsis Maximum Likelihood Estimation and Inference by : Russell B. Millar
Download or read book Maximum Likelihood Estimation and Inference written by Russell B. Millar and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.
Book Synopsis Spatial Capture-Recapture by : J. Andrew Royle
Download or read book Spatial Capture-Recapture written by J. Andrew Royle and published by Academic Press. This book was released on 2013-08-27 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial Capture-Recapture provides a comprehensive how-to manual with detailed examples of spatial capture-recapture models based on current technology and knowledge. Spatial Capture-Recapture provides you with an extensive step-by-step analysis of many data sets using different software implementations. The authors' approach is practical – it embraces Bayesian and classical inference strategies to give the reader different options to get the job done. In addition, Spatial Capture-Recapture provides data sets, sample code and computing scripts in an R package. - Comprehensive reference on revolutionary new methods in ecology makes this the first and only book on the topic - Every methodological element has a detailed worked example with a code template, allowing you to learn by example - Includes an R package that contains all computer code and data sets on companion website
Book Synopsis Targeted Learning by : Mark J. van der Laan
Download or read book Targeted Learning written by Mark J. van der Laan and published by Springer Science & Business Media. This book was released on 2011-06-17 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.
Book Synopsis Introduction to Empirical Processes and Semiparametric Inference by : Michael R. Kosorok
Download or read book Introduction to Empirical Processes and Semiparametric Inference written by Michael R. Kosorok and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.
Book Synopsis Financial Risk Forecasting by : Jon Danielsson
Download or read book Financial Risk Forecasting written by Jon Danielsson and published by John Wiley & Sons. This book was released on 2011-04-20 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.
Book Synopsis Maximum Likelihood Estimation by : Scott R. Eliason
Download or read book Maximum Likelihood Estimation written by Scott R. Eliason and published by SAGE. This book was released on 1993 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a short introduction to Maximum Likelihood (ML) Estimation. It provides a general modeling framework that utilizes the tools of ML methods to outline a flexible modeling strategy that accommodates cases from the simplest linear models (such as the normal error regression model) to the most complex nonlinear models linking endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, the author discusses what properties are desirable in an estimator, basic techniques for finding maximum likelihood solutions, the general form of the covariance matrix for ML estimates, the sampling distribution of ML estimators; the use of ML in the normal as well as other distributions, and some useful illustrations of likelihoods.
Book Synopsis Maximum Likelihood Estimation with Stata by : William Gould
Download or read book Maximum Likelihood Estimation with Stata written by William Gould and published by . This book was released on 2003 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Machine Learning by : Kevin P. Murphy
Download or read book Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2012-08-24 with total page 1102 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.