Matrix Tricks for Linear Statistical Models

Download Matrix Tricks for Linear Statistical Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642104738
Total Pages : 504 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Matrix Tricks for Linear Statistical Models by : Simo Puntanen

Download or read book Matrix Tricks for Linear Statistical Models written by Simo Puntanen and published by Springer Science & Business Media. This book was released on 2011-08-24 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple “tricks” which simplify and clarify the treatment of a problem—both for the student and for the professor. Of course, the concept of a trick is not uniquely defined—by a trick we simply mean here a useful important handy result. In this book we collect together our Top Twenty favourite matrix tricks for linear statistical models.

Linear Models in Statistics

Download Linear Models in Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470192607
Total Pages : 690 pages
Book Rating : 4.4/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Linear Models in Statistics by : Alvin C. Rencher

Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Matrix Algebra for Linear Models

Download Matrix Algebra for Linear Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118592557
Total Pages : 391 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Matrix Algebra for Linear Models by : Marvin H. J. Gruber

Download or read book Matrix Algebra for Linear Models written by Marvin H. J. Gruber and published by John Wiley & Sons. This book was released on 2013-12-31 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to matrix analysis theory and applications in the field of statistics Comprehensive in scope, Matrix Algebra for Linear Models offers a succinct summary of matrix theory and its related applications to statistics, especially linear models. The book provides a unified presentation of the mathematical properties and statistical applications of matrices in order to define and manipulate data. Written for theoretical and applied statisticians, the book utilizes multiple numerical examples to illustrate key ideas, methods, and techniques crucial to understanding matrix algebra’s application in linear models. Matrix Algebra for Linear Models expertly balances concepts and methods allowing for a side-by-side presentation of matrix theory and its linear model applications. Including concise summaries on each topic, the book also features: Methods of deriving results from the properties of eigenvalues and the singular value decomposition Solutions to matrix optimization problems for obtaining more efficient biased estimators for parameters in linear regression models A section on the generalized singular value decomposition Multiple chapter exercises with selected answers to enhance understanding of the presented material Matrix Algebra for Linear Models is an ideal textbook for advanced undergraduate and graduate-level courses on statistics, matrices, and linear algebra. The book is also an excellent reference for statisticians, engineers, economists, and readers interested in the linear statistical model.

Linear Algebra and Linear Models

Download Linear Algebra and Linear Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038722601X
Total Pages : 145 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra and Linear Models by : Ravindra B. Bapat

Download or read book Linear Algebra and Linear Models written by Ravindra B. Bapat and published by Springer Science & Business Media. This book was released on 2008-01-18 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous introduction to the basic aspects of the theory of linear estimation and hypothesis testing, covering the necessary prerequisites in matrices, multivariate normal distribution and distributions of quadratic forms along the way. It will appeal to advanced undergraduate and first-year graduate students, research mathematicians and statisticians.

A First Course in Linear Model Theory

Download A First Course in Linear Model Theory PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781584882473
Total Pages : 494 pages
Book Rating : 4.8/5 (824 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Linear Model Theory by : Nalini Ravishanker

Download or read book A First Course in Linear Model Theory written by Nalini Ravishanker and published by CRC Press. This book was released on 2001-12-21 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This innovative, intermediate-level statistics text fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the author's introduces students to the mathematical and statistical concepts and tools that form a foundation for studying the theory and applications of both univariate and multivariate linear models A First Course in Linear Model Theory systematically presents the basic theory behind linear statistical models with motivation from an algebraic as well as a geometric perspective. Through the concepts and tools of matrix and linear algebra and distribution theory, it provides a framework for understanding classical and contemporary linear model theory. It does not merely introduce formulas, but develops in students the art of statistical thinking and inspires learning at an intuitive level by emphasizing conceptual understanding. The authors' fresh approach, methodical presentation, wealth of examples, and introduction to topics beyond the classical theory set this book apart from other texts on linear models. It forms a refreshing and invaluable first step in students' study of advanced linear models, generalized linear models, nonlinear models, and dynamic models.

Basics of Matrix Algebra for Statistics with R

Download Basics of Matrix Algebra for Statistics with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315360055
Total Pages : 208 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Basics of Matrix Algebra for Statistics with R by : Nick Fieller

Download or read book Basics of Matrix Algebra for Statistics with R written by Nick Fieller and published by CRC Press. This book was released on 2018-09-03 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Thorough Guide to Elementary Matrix Algebra and Implementation in R Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject. The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling. In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers. Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.

Matrix Algebra

Download Matrix Algebra PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387708723
Total Pages : 536 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Matrix Algebra by : James E. Gentle

Download or read book Matrix Algebra written by James E. Gentle and published by Springer Science & Business Media. This book was released on 2007-07-27 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

Linear Statistical Models

Download Linear Statistical Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470231467
Total Pages : 517 pages
Book Rating : 4.4/5 (72 download)

DOWNLOAD NOW!


Book Synopsis Linear Statistical Models by : James H. Stapleton

Download or read book Linear Statistical Models written by James H. Stapleton and published by John Wiley & Sons. This book was released on 2009-08-03 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "This impressive and eminently readable text . . . [is] a welcome addition to the statistical literature." —The Indian Journal of Statistics Revised to reflect the current developments on the topic, Linear Statistical Models, Second Edition provides an up-to-date approach to various statistical model concepts. The book includes clear discussions that illustrate key concepts in an accessible and interesting format while incorporating the most modern software applications. This Second Edition follows an introduction-theorem-proof-examples format that allows for easier comprehension of how to use the methods and recognize the associated assumptions and limits. In addition to discussions on the methods of random vectors, multiple regression techniques, simultaneous confidence intervals, and analysis of frequency data, new topics such as mixed models and curve fitting of models have been added to thoroughly update and modernize the book. Additional topical coverage includes: An introduction to R and S-Plus® with many examples Multiple comparison procedures Estimation of quantiles for regression models An emphasis on vector spaces and the corresponding geometry Extensive graphical displays accompany the book's updated descriptions and examples, which can be simulated using R, S-Plus®, and SAS® code. Problems at the end of each chapter allow readers to test their understanding of the presented concepts, and additional data sets are available via the book's FTP site. Linear Statistical Models, Second Edition is an excellent book for courses on linear models at the upper-undergraduate and graduate levels. It also serves as a comprehensive reference for statisticians, engineers, and scientists who apply multiple regression or analysis of variance in their everyday work.

Data Analysis Using Regression and Multilevel/Hierarchical Models

Download Data Analysis Using Regression and Multilevel/Hierarchical Models PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521686891
Total Pages : 654 pages
Book Rating : 4.6/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis Using Regression and Multilevel/Hierarchical Models by : Andrew Gelman

Download or read book Data Analysis Using Regression and Multilevel/Hierarchical Models written by Andrew Gelman and published by Cambridge University Press. This book was released on 2007 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.

Statistical Foundations of Data Science

Download Statistical Foundations of Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429527616
Total Pages : 974 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

R for Data Science

Download R for Data Science PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491910364
Total Pages : 521 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis R for Data Science by : Hadley Wickham

Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Linear Models and the Relevant Distributions and Matrix Algebra

Download Linear Models and the Relevant Distributions and Matrix Algebra PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000983757
Total Pages : 242 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Linear Models and the Relevant Distributions and Matrix Algebra by : David A. Harville

Download or read book Linear Models and the Relevant Distributions and Matrix Algebra written by David A. Harville and published by CRC Press. This book was released on 2023-10-23 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Exercises and solutions are included throughout, from both the first and second volume • Includes coverage of additional topics not covered in the first volume • Highly valuable as a reference book for graduate students or researchers

Linear Algebra Done Right

Download Linear Algebra Done Right PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387982595
Total Pages : 276 pages
Book Rating : 4.9/5 (825 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra Done Right by : Sheldon Axler

Download or read book Linear Algebra Done Right written by Sheldon Axler and published by Springer Science & Business Media. This book was released on 1997-07-18 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.

Regression Analysis and Linear Models

Download Regression Analysis and Linear Models PDF Online Free

Author :
Publisher : Guilford Publications
ISBN 13 : 1462527981
Total Pages : 689 pages
Book Rating : 4.4/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Regression Analysis and Linear Models by : Richard B. Darlington

Download or read book Regression Analysis and Linear Models written by Richard B. Darlington and published by Guilford Publications. This book was released on 2016-08-22 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.

Statistical Parametric Mapping: The Analysis of Functional Brain Images

Download Statistical Parametric Mapping: The Analysis of Functional Brain Images PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080466508
Total Pages : 689 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Statistical Parametric Mapping: The Analysis of Functional Brain Images by : William D. Penny

Download or read book Statistical Parametric Mapping: The Analysis of Functional Brain Images written by William D. Penny and published by Elsevier. This book was released on 2011-04-28 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. - An essential reference and companion for users of the SPM software - Provides a complete description of the concepts and procedures entailed by the analysis of brain images - Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data - Stands as a compendium of all the advances in neuroimaging data analysis over the past decade - Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes - Structured treatment of data analysis issues that links different modalities and models - Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible

Matrix Algebra From a Statistician's Perspective

Download Matrix Algebra From a Statistician's Perspective PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387783563
Total Pages : 639 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Matrix Algebra From a Statistician's Perspective by : David A. Harville

Download or read book Matrix Algebra From a Statistician's Perspective written by David A. Harville and published by Springer Science & Business Media. This book was released on 2008-06-27 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: A knowledge of matrix algebra is a prerequisite for the study of much of modern statistics, especially the areas of linear statistical models and multivariate statistics. This reference book provides the background in matrix algebra necessary to do research and understand the results in these areas. Essentially self-contained, the book is best-suited for a reader who has had some previous exposure to matrices. Solultions to the exercises are available in the author's "Matrix Algebra: Exercises and Solutions."

Applying Generalized Linear Models

Download Applying Generalized Linear Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038722730X
Total Pages : 265 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Applying Generalized Linear Models by : James K. Lindsey

Download or read book Applying Generalized Linear Models written by James K. Lindsey and published by Springer Science & Business Media. This book was released on 2008-01-15 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes how generalised linear modelling procedures can be used in many different fields, without becoming entangled in problems of statistical inference. The author shows the unity of many of the commonly used models and provides readers with a taste of many different areas, such as survival models, time series, and spatial analysis, and of their unity. As such, this book will appeal to applied statisticians and to scientists having a basic grounding in modern statistics. With many exercises at the end of each chapter, it will equally constitute an excellent text for teaching applied statistics students and non- statistics majors. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, being familiar at least with the analysis of the simpler normal linear models, regression and ANOVA.