Mathematical Methods in Immunology

Download Mathematical Methods in Immunology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821875566
Total Pages : 122 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Methods in Immunology by : Jerome Kenneth Percus

Download or read book Mathematical Methods in Immunology written by Jerome Kenneth Percus and published by American Mathematical Soc.. This book was released on 2012 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Any organism, to survive, must use a variety of defense mechanisms. A relatively recent evolutionary development is that of the adaptive immune system, carried to a quite sophisticated level by mammals. The complexity of this system calls for its encapsulation by mathematical models, and this book aims at the associated description and analysis. In the process, it introduces tools that should be in the armory of any current or aspiring applied mathematician, in the context of, arguably, the most effective system nature has devised to protect an organism from its manifold invisible enemies.

Mathematical Modeling of Biological Systems, Volume II

Download Mathematical Modeling of Biological Systems, Volume II PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 081764556X
Total Pages : 383 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Modeling of Biological Systems, Volume II by : Andreas Deutsch

Download or read book Mathematical Modeling of Biological Systems, Volume II written by Andreas Deutsch and published by Springer Science & Business Media. This book was released on 2007-10-12 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume II of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. Highlighted throughout are mathematical and computational apporaches to examine central problems in the life sciences, ranging from the organization principles of individual cells to the dynamics of large populations. The chapters are thematically organized into the following main areas: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods and education. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.

Mathematical Models of Tumor-Immune System Dynamics

Download Mathematical Models of Tumor-Immune System Dynamics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493917935
Total Pages : 282 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Models of Tumor-Immune System Dynamics by : Amina Eladdadi

Download or read book Mathematical Models of Tumor-Immune System Dynamics written by Amina Eladdadi and published by Springer. This book was released on 2014-11-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences.

Mathematical, Computational and Experimental T Cell Immunology

Download Mathematical, Computational and Experimental T Cell Immunology PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030572048
Total Pages : 300 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Mathematical, Computational and Experimental T Cell Immunology by : Carmen Molina-París

Download or read book Mathematical, Computational and Experimental T Cell Immunology written by Carmen Molina-París and published by Springer Nature. This book was released on 2021-01-04 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical, statistical, and computational methods enable multi-disciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. This volume collects a representative sample of studies in T cell immunology that illustrate the benefits of modelling-experimental collaborations and which have proven valuable or even ground-breaking. Studies include thymic selection, T cell repertoire diversity, T cell homeostasis in health and disease, T cell-mediated immune responses, T cell memory, T cell signalling and analysis of flow cytometry data sets. Contributing authors are leading scientists in the area of experimental, computational, and mathematical immunology. Each chapter includes state-of-the-art and pedagogical content, making this book accessible to readers with limited experience in T cell immunology and/or mathematical and computational modelling.

Mathematical Models in Immunology

Download Mathematical Models in Immunology PDF Online Free

Author :
Publisher : Springer
ISBN 13 :
Total Pages : 386 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Models in Immunology by : Guriĭ Ivanovich Marchuk

Download or read book Mathematical Models in Immunology written by Guriĭ Ivanovich Marchuk and published by Springer. This book was released on 1983 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mathematical Modelling of Immune Response in Infectious Diseases

Download Mathematical Modelling of Immune Response in Infectious Diseases PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401587981
Total Pages : 356 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Modelling of Immune Response in Infectious Diseases by : Guri I. Marchuk

Download or read book Mathematical Modelling of Immune Response in Infectious Diseases written by Guri I. Marchuk and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning his work on the monograph to be published in English, this author tried to present more or less general notions of the possibilities of mathematics in the new and rapidly developing science of infectious immunology, describing the processes of an organism's defence against antigen invasions. The results presented in this monograph are based on the construc tion and application of closed models of immune response to infections which makes it possible to approach problems of optimizing the treat ment of chronic and hypertoxic forms of diseases. The author, being a mathematician, had creative long-Iasting con tacts with immunologists, geneticist, biologists, and clinicians. As far back as 1976 it resulted in the organization of a special seminar in the Computing Center of Siberian Branch of the USSR Academy of Sci ences on mathematical models in immunology. The seminar attracted the attention of a wide circle of leading specialists in various fields of science. All these made it possible to approach, from a more or less united stand point, the construction of models of immune response, the mathematical description of the models, and interpretation of results.

An Introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology

Download An Introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821828169
Total Pages : 194 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology by : James Sneyd

Download or read book An Introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology written by James Sneyd and published by American Mathematical Soc.. This book was released on 2002 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many respects, biology is the new frontier for applied mathematicians. This book demonstrates the important role mathematics plays in the study of some biological problems. It introduces mathematicians to the biological sciences and provides enough mathematics for bioscientists to appreciate the utility of the modelling approach. The book presents a number of diverse topics, such as neurophysiology, cell biology, immunology, and human genetics. It examines how research is done, what mathematics is used, what the outstanding questions are, and how to enter the field. Also given is a brief historical survey of each topic, putting current research into perspective. The book is suitable for mathematicians and biologists interested in mathematical methods in biology.

Killer Cell Dynamics

Download Killer Cell Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387687335
Total Pages : 226 pages
Book Rating : 4.3/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Killer Cell Dynamics by : Dominik Wodarz

Download or read book Killer Cell Dynamics written by Dominik Wodarz and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews how mathematical and computational approaches can be useful to help us understand how killer T-cell responses work to fight viral infections. It also demonstrates, in a writing style that exemplifies the point, that such mathematical and computational approaches are most valuable when coupled with experimental work through interdisciplinary collaborations. Designed to be useful to immunoligists and viroligists without extensive computational background, the book covers a broad variety of topics, including both basic immunological questions and the application of these insights to the understanding and treatment of pathogenic human diseases.

Mathematical Models and Immune Cell Biology

Download Mathematical Models and Immune Cell Biology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441977252
Total Pages : 413 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Models and Immune Cell Biology by : Carmen Molina-París

Download or read book Mathematical Models and Immune Cell Biology written by Carmen Molina-París and published by Springer Science & Business Media. This book was released on 2011-05-05 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whole new areas of immunological research are emerging from the analysis of experimental data, going beyond statistics and parameter estimation into what an applied mathematician would recognise as modelling of dynamical systems. Stochastic methods are increasingly important, because stochastic models are closer to the Brownian reality of the cellular and sub-cellular world.

Mathematical Immunology of Virus Infections

Download Mathematical Immunology of Virus Infections PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319723170
Total Pages : 256 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Immunology of Virus Infections by : Gennady Bocharov

Download or read book Mathematical Immunology of Virus Infections written by Gennady Bocharov and published by Springer. This book was released on 2018-06-12 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph concisely but thoroughly introduces the reader to the field of mathematical immunology. The book covers first basic principles of formulating a mathematical model, and an outline on data-driven parameter estimation and model selection. The authors then introduce the modeling of experimental and human infections and provide the reader with helpful exercises. The target audience primarily comprises researchers and graduate students in the field of mathematical biology who wish to be concisely introduced into mathematical immunology.

Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease

Download Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889634612
Total Pages : 278 pages
Book Rating : 4.8/5 (896 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease by : Gennady Bocharov

Download or read book Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease written by Gennady Bocharov and published by Frontiers Media SA. This book was released on 2020-02-24 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The immune system provides the host organism with defense mechanisms against invading pathogens and tumor development and it plays an active role in tissue and organ regeneration. Deviations from the normal physiological functioning of the immune system can lead to the development of diseases with various pathologies including autoimmune diseases and cancer. Modern research in immunology is characterized by an unprecedented level of detail that has progressed towards viewing the immune system as numerous components that function together as a whole network. Currently, we are facing significant difficulties in analyzing the data being generated from high-throughput technologies for understanding immune system dynamics and functions, a problem known as the ‘curse of dimensionality’. As the mainstream research in mathematical immunology is based on low-resolution models, a fundamental question is how complex the mathematical models should be? To respond to this challenging issue, we advocate a hypothesis-driven approach to formulate and apply available mathematical modelling technologies for understanding the complexity of the immune system. Moreover, pure empirical analyses of immune system behavior and the system’s response to external perturbations can only produce a static description of the individual components of the immune system and the interactions between them. Shifting our view of the immune system from a static schematic perception to a dynamic multi-level system is a daunting task. It requires the development of appropriate mathematical methodologies for the holistic and quantitative analysis of multi-level molecular and cellular networks. Their coordinated behavior is dynamically controlled via distributed feedback and feedforward mechanisms which altogether orchestrate immune system functions. The molecular regulatory loops inherent to the immune system that mediate cellular behaviors, e.g. exhaustion, suppression, activation and tuning, can be analyzed using mathematical categories such as multi-stability, switches, ultra-sensitivity, distributed system, graph dynamics, or hierarchical control. GB is supported by the Russian Science Foundation (grant 18-11-00171). AM is also supported by grants from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER grant no. SAF2016-75505-R, the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0370) and the Russian Science Foundation (grant 18-11-00171).

Mathematical Models in Immunology

Download Mathematical Models in Immunology PDF Online Free

Author :
Publisher :
ISBN 13 : 9783540909019
Total Pages : 351 pages
Book Rating : 4.9/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Models in Immunology by : Gurij I. Marčuk

Download or read book Mathematical Models in Immunology written by Gurij I. Marčuk and published by . This book was released on 1983 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Systems Immunology

Download Systems Immunology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351646141
Total Pages : 442 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Systems Immunology by : Jayajit Das

Download or read book Systems Immunology written by Jayajit Das and published by CRC Press. This book was released on 2018-09-03 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Taken together, the body of information contained in this book provides readers with a bird’s-eye view of different aspects of exciting work at the convergence of disciplines that will ultimately lead to a future where we understand how immunity is regulated, and how we can harness this knowledge toward practical ends that reduce human suffering. I commend the editors for putting this volume together." –Arup K. Chakraborty, Robert T. Haslam Professor of Chemical Engineering, and Professor of Physics, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA New experimental techniques in immunology have produced large and complex data sets that require quantitative modeling for analysis. This book provides a complete overview of computational immunology, from basic concepts to mathematical modeling at the single molecule, cellular, organism, and population levels. It showcases modern mechanistic models and their use in making predictions, designing experiments, and elucidating underlying biochemical processes. It begins with an introduction to data analysis, approximations, and assumptions used in model building. Core chapters address models and methods for studying immune responses, with fundamental concepts clearly defined. Readers from immunology, quantitative biology, and applied physics will benefit from the following: Fundamental principles of computational immunology and modern quantitative methods for studying immune response at the single molecule, cellular, organism, and population levels. An overview of basic concepts in modeling and data analysis. Coverage of topics where mechanistic modeling has contributed substantially to current understanding. Discussion of genetic diversity of the immune system, cell signaling in the immune system, immune response at the cell population scale, and ecology of host-pathogen interactions.

Mathematical Methods for Analysis of a Complex Disease

Download Mathematical Methods for Analysis of a Complex Disease PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821872869
Total Pages : 165 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Methods for Analysis of a Complex Disease by : F. C. Hoppensteadt

Download or read book Mathematical Methods for Analysis of a Complex Disease written by F. C. Hoppensteadt and published by American Mathematical Soc.. This book was released on 2011-09-23 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex diseases involve most aspects of population biology, including genetics, demographics, epidemiology, and ecology. Mathematical methods, including differential, difference, and integral equations, numerical analysis, and random processes, have been used effectively in all of these areas. The aim of this book is to provide sufficient background in such mathematical and computational methods to enable the reader to better understand complex systems in biology, medicine, and the life sciences. It introduces concepts in mathematics to study population phenomena with the goal of describing complicated aspects of a disease, such as malaria, involving several species. The book is based on a graduate course in computational biology and applied mathematics taught at the Courant Institute of Mathematical Sciences in fall 2010. The mathematical level is kept to essentially advanced undergraduate mathematics, and the results in the book are intended to provide readers with tools for performing more in-depth analysis of population phenomena.

A Course in Mathematical Biology

Download A Course in Mathematical Biology PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898718252
Total Pages : 307 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis A Course in Mathematical Biology by : Gerda de Vries

Download or read book A Course in Mathematical Biology written by Gerda de Vries and published by SIAM. This book was released on 2006-07-01 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.

Mathematical Models in Immunology

Download Mathematical Models in Immunology PDF Online Free

Author :
Publisher :
ISBN 13 : 9780387912196
Total Pages : 351 pages
Book Rating : 4.9/5 (121 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Models in Immunology by : Gouri Ivanovitch Martchouk

Download or read book Mathematical Models in Immunology written by Gouri Ivanovitch Martchouk and published by . This book was released on 1983 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mathematical Methods and Models in Biomedicine

Download Mathematical Methods and Models in Biomedicine PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461441773
Total Pages : 426 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Methods and Models in Biomedicine by : Urszula Ledzewicz

Download or read book Mathematical Methods and Models in Biomedicine written by Urszula Ledzewicz and published by Springer Science & Business Media. This book was released on 2012-10-21 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.