Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Mathematical Methods For Knowledge Discovery And Data Mining
Download Mathematical Methods For Knowledge Discovery And Data Mining full books in PDF, epub, and Kindle. Read online Mathematical Methods For Knowledge Discovery And Data Mining ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Mathematical Methods for Knowledge Discovery and Data Mining by : Felici, Giovanni
Download or read book Mathematical Methods for Knowledge Discovery and Data Mining written by Felici, Giovanni and published by IGI Global. This book was released on 2007-10-31 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on the mathematical models and methods that support most data mining applications and solution techniques, covering such topics as association rules; Bayesian methods; data visualization; kernel methods; neural networks; text, speech, and image recognition; an invaluable resource for scholars and practitioners in the fields of biomedicine, engineering, finance, manufacturing, marketing, performance measurement, and telecommunications"--Provided by publisher.
Author :Evangelos Triantaphyllou Publisher :Springer Science & Business Media ISBN 13 :144191630X Total Pages :371 pages Book Rating :4.4/5 (419 download)
Book Synopsis Data Mining and Knowledge Discovery via Logic-Based Methods by : Evangelos Triantaphyllou
Download or read book Data Mining and Knowledge Discovery via Logic-Based Methods written by Evangelos Triantaphyllou and published by Springer Science & Business Media. This book was released on 2010-06-08 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.
Book Synopsis Knowledge Discovery with Support Vector Machines by : Lutz H. Hamel
Download or read book Knowledge Discovery with Support Vector Machines written by Lutz H. Hamel and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.
Book Synopsis Mathematical Tools for Data Mining by : Dan A. Simovici
Download or read book Mathematical Tools for Data Mining written by Dan A. Simovici and published by Springer Science & Business Media. This book was released on 2008-08-15 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume was born from the experience of the authors as researchers and educators,whichsuggeststhatmanystudentsofdataminingarehandicapped in their research by the lack of a formal, systematic education in its mat- matics. The data mining literature contains many excellent titles that address the needs of users with a variety of interests ranging from decision making to p- tern investigation in biological data. However, these books do not deal with the mathematical tools that are currently needed by data mining researchers and doctoral students. We felt it timely to produce a book that integrates the mathematics of data mining with its applications. We emphasize that this book is about mathematical tools for data mining and not about data mining itself; despite this, a substantial amount of applications of mathematical c- cepts in data mining are presented. The book is intended as a reference for the working data miner. In our opinion, three areas of mathematics are vital for data mining: set theory,includingpartially orderedsetsandcombinatorics;linear algebra,with its many applications in principal component analysis and neural networks; and probability theory, which plays a foundational role in statistics, machine learning and data mining. Thisvolumeisdedicatedtothestudyofset-theoreticalfoundationsofdata mining. Two further volumes are contemplated that will cover linear algebra and probability theory. The ?rst part of this book, dedicated to set theory, begins with a study of functionsandrelations.Applicationsofthesefundamentalconceptstosuch- sues as equivalences and partitions are discussed. Also, we prepare the ground for the following volumes by discussing indicator functions, ?elds and?-?elds, and other concepts.
Book Synopsis Data Mining and Machine Learning by : Mohammed J. Zaki
Download or read book Data Mining and Machine Learning written by Mohammed J. Zaki and published by Cambridge University Press. This book was released on 2020-01-30 with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt: New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Book Synopsis Scientific Data Mining and Knowledge Discovery by : Mohamed Medhat Gaber
Download or read book Scientific Data Mining and Knowledge Discovery written by Mohamed Medhat Gaber and published by Springer Science & Business Media. This book was released on 2009-09-19 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mohamed Medhat Gaber “It is not my aim to surprise or shock you – but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied” by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1–3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.
Book Synopsis Contemporary Perspectives in Data Mining, Volume 2 by : Kenneth D. Lawrence
Download or read book Contemporary Perspectives in Data Mining, Volume 2 written by Kenneth D. Lawrence and published by IAP. This book was released on 2015-07-01 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in marketing (customer loyalty, identifying profitable customers, instore promotions, e-commerce populations); in business (teaching data mining, efficiency of the Chinese automobile industry, moderate asset allocation funds); and techniques (veterinary predictive models, data integrity in the cloud, irregular pattern detection in a mobility network and road safety modeling.)
Book Synopsis Soft Computing for Knowledge Discovery and Data Mining by : Oded Maimon
Download or read book Soft Computing for Knowledge Discovery and Data Mining written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2007-10-25 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.
Book Synopsis Data Mining and Analysis by : Mohammed J. Zaki
Download or read book Data Mining and Analysis written by Mohammed J. Zaki and published by Cambridge University Press. This book was released on 2014-05-12 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Download or read book Data Mining written by Krzysztof J. Cios and published by Springer Science & Business Media. This book was released on 2007-10-05 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.
Book Synopsis Data Science and Machine Learning by : Dirk P. Kroese
Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
Book Synopsis Data Mining and Knowledge Discovery with Evolutionary Algorithms by : Alex A. Freitas
Download or read book Data Mining and Knowledge Discovery with Evolutionary Algorithms written by Alex A. Freitas and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics
Book Synopsis Data Mining: Concepts and Techniques by : Jiawei Han
Download or read book Data Mining: Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Book Synopsis Data Mining Methods for Knowledge Discovery by : Krzysztof J. Cios
Download or read book Data Mining Methods for Knowledge Discovery written by Krzysztof J. Cios and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.
Author :Evangelos Triantaphyllou Publisher :Springer Science & Business Media ISBN 13 :0387342966 Total Pages :784 pages Book Rating :4.3/5 (873 download)
Book Synopsis Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques by : Evangelos Triantaphyllou
Download or read book Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques written by Evangelos Triantaphyllou and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book outlines the core theory and practice of data mining and knowledge discovery (DM & KD) examining theoretical foundations for various methods, and presenting an array of examples, many drawn from real-life applications. Most theoretical developments are accompanied by extensive empirical analysis, offering a deep insight into both theoretical and practical aspects of the subject. The book presents the combined research experiences of 40 expert contributors of world renown.
Book Synopsis Temporal Data Mining by : Theophano Mitsa
Download or read book Temporal Data Mining written by Theophano Mitsa and published by CRC Press. This book was released on 2010-03-10 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.
Book Synopsis Computational Intelligent Data Analysis for Sustainable Development by : Ting Yu
Download or read book Computational Intelligent Data Analysis for Sustainable Development written by Ting Yu and published by CRC Press. This book was released on 2016-04-19 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development present