Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Mathematical Foundations Of Infinite Dimensional Statistical Models
Download Mathematical Foundations Of Infinite Dimensional Statistical Models full books in PDF, epub, and Kindle. Read online Mathematical Foundations Of Infinite Dimensional Statistical Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Mathematical Foundations of Infinite-Dimensional Statistical Models by : Evarist Giné
Download or read book Mathematical Foundations of Infinite-Dimensional Statistical Models written by Evarist Giné and published by Cambridge University Press. This book was released on 2021-03-25 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: In nonparametric and high-dimensional statistical models, the classical Gauss–Fisher–Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics.
Book Synopsis Mathematical Foundations of Infinite-Dimensional Statistical Models by : Evarist Giné
Download or read book Mathematical Foundations of Infinite-Dimensional Statistical Models written by Evarist Giné and published by Cambridge University Press. This book was released on 2015-11-18 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions.
Book Synopsis Probability with Martingales by : David Williams
Download or read book Probability with Martingales written by David Williams and published by Cambridge University Press. This book was released on 1991-02-14 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.
Book Synopsis Probabilistic Symmetries and Invariance Principles by : Olav Kallenberg
Download or read book Probabilistic Symmetries and Invariance Principles written by Olav Kallenberg and published by Springer Science & Business Media. This book was released on 2005-07-27 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive treatment of the three basic symmetries of probability theory—contractability, exchangeability, and rotatability—defined as invariance in distribution under contractions, permutations, and rotations. Originating with the pioneering work of de Finetti from the 1930's, the theory has evolved into a unique body of deep, beautiful, and often surprising results, comprising the basic representations and invariance properties in one and several dimensions, and exhibiting some unexpected links between the various symmetries as well as to many other areas of modern probability. Most chapters require only some basic, graduate level probability theory, and should be accessible to any serious researchers and graduate students in probability and statistics. Parts of the book may also be of interest to pure and applied mathematicians in other areas. The exposition is formally self-contained, with detailed references provided for any deeper facts from real analysis or probability used in the book. Olav Kallenberg received his Ph.D. in 1972 from Chalmers University in Gothenburg, Sweden. After teaching for many years at Swedish universities, he moved in 1985 to the US, where he is currently Professor of Mathematics at Auburn University. He is well known for his previous books Random Measures (4th edition, 1986) and Foundations of Modern Probability (2nd edition, 2002) and for numerous research papers in all areas of probability. In 1977, he was the second recipient ever of the prestigious Rollo Davidson Prize from Cambridge University. In 1991–94, he served as the Editor in Chief of Probability Theory and Related Fields. Professor Kallenberg is an elected fellow of the Institute of Mathematical Statistics.
Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan
Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Book Synopsis High-Dimensional Probability by : Roman Vershynin
Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Book Synopsis Fundamentals of Nonparametric Bayesian Inference by : Subhashis Ghosal
Download or read book Fundamentals of Nonparametric Bayesian Inference written by Subhashis Ghosal and published by Cambridge University Press. This book was released on 2017-06-26 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.
Book Synopsis Analysis of Multivariate and High-Dimensional Data by : Inge Koch
Download or read book Analysis of Multivariate and High-Dimensional Data written by Inge Koch and published by Cambridge University Press. This book was released on 2014 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern approach integrates classical and contemporary methods, fusing theory and practice and bridging the gap to statistical learning.
Book Synopsis A Modern Approach to Probability Theory by : Bert E. Fristedt
Download or read book A Modern Approach to Probability Theory written by Bert E. Fristedt and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.
Book Synopsis Foundations of Data Science by : Avrim Blum
Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Book Synopsis Introduction to the Mathematical and Statistical Foundations of Econometrics by : Herman J. Bierens
Download or read book Introduction to the Mathematical and Statistical Foundations of Econometrics written by Herman J. Bierens and published by Cambridge University Press. This book was released on 2004-12-20 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for use in a rigorous introductory PhD level course in econometrics.
Book Synopsis All of Statistics by : Larry Wasserman
Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Book Synopsis Introduction to High-Dimensional Statistics by : Christophe Giraud
Download or read book Introduction to High-Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.
Book Synopsis Extreme Value Theory by : Laurens de Haan
Download or read book Extreme Value Theory written by Laurens de Haan and published by Springer Science & Business Media. This book was released on 2007-12-09 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on theoretical results along with applications All the main topics covering the heart of the subject are introduced to the reader in a systematic fashion Concentration is on the probabilistic and statistical aspects of extreme values Excellent introduction to extreme value theory at the graduate level, requiring only some mathematical maturity
Book Synopsis Mathematical Foundations of Computer Networking by : Srinivasan Keshav
Download or read book Mathematical Foundations of Computer Networking written by Srinivasan Keshav and published by Pearson Education. This book was released on 2012 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical techniques pervade current research in computer networking, yet are not taught to most computer science undergraduates. This self-contained, highly-accessible book bridges the gap, providing the mathematical grounding students and professionals need to successfully design or evaluate networking systems. The only book of its kind, it brings together information previously scattered amongst multiple texts. It first provides crucial background in basic mathematical tools, and then illuminates the specific theories that underlie computer networking. Coverage includes: * Basic probability * Statistics * Linear Algebra * Optimization * Signals, Systems, and Transforms, including Fourier series and transforms, Laplace transforms, DFT, FFT, and Z transforms * Queuing theory * Game Theory * Control theory * Information theory
Book Synopsis Introduction to the Theory of Distributions by : F. G. Friedlander
Download or read book Introduction to the Theory of Distributions written by F. G. Friedlander and published by Cambridge University Press. This book was released on 1998 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a classic graduate text on the theory of distributions.
Book Synopsis Stochastic Equations in Infinite Dimensions by : Da Prato Guiseppe
Download or read book Stochastic Equations in Infinite Dimensions written by Da Prato Guiseppe and published by . This book was released on 2013-11-21 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Ito and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations."