Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Deep Learning With Python

Download Deep Learning With Python PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 266 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Deep Learning With Python by : Jason Brownlee

Download or read book Deep Learning With Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2016-05-13 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is the most interesting and powerful machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine learning projects.

Mathematics for Machine Learning

Download Mathematics for Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108569323
Total Pages : 392 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Understanding Machine Learning

Download Understanding Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107057132
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Mastering AI

Download Mastering AI PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1668053349
Total Pages : 336 pages
Book Rating : 4.6/5 (68 download)

DOWNLOAD NOW!


Book Synopsis Mastering AI by : Jeremy Kahn

Download or read book Mastering AI written by Jeremy Kahn and published by Simon and Schuster. This book was released on 2024-07-09 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Fortune magazine journalist draws on his expertise and extensive contacts among the companies and scientists at the forefront of artificial intelligence to offer dramatic predictions of AI’s impact over the next decade, from reshaping our economy and the way we work, learn, and create to unknitting our social fabric, jeopardizing our democracy, and fundamentally altering the way we think. Within the next five years, Jeremy Kahn predicts, AI will disrupt almost every industry and enterprise, with vastly increased efficiency and productivity. It will restructure the workforce, making AI copilots a must for every knowledge worker. It will revamp education, meaning children around the world can have personal, portable tutors. It will revolutionize health care, making individualized, targeted pharmaceuticals more affordable. It will compel us to reimagine how we make art, compose music, and write and publish books. The potential of generative AI to extend our skills, talents, and creativity as humans is undeniably exciting and promising. But while this new technology has a bright future, it also casts a dark and fearful shadow. AI will provoke pervasive, disruptive, potentially devastating knock-on effects. Leveraging his unrivaled access to the leaders, scientists, futurists, and others who are making AI a reality, Kahn will argue that if not carefully designed and vigilantly regulated AI will deepen income inequality, depressing wages while imposing winner-take-all markets across much of the economy. AI risks undermining democracy, as truth is overtaken by misinformation, racial bias, and harmful stereotypes. Continuing a process begun by the internet, AI will rewire our brains, likely inhibiting our ability to think critically, to remember, and even to get along with one another—unless we all take decisive action to prevent this from happening. Much as Michael Lewis’s classic The New New Thing offered a prescient, insightful, and eminently readable account of life inside the dot-com bubble, Mastering AI delivers much-needed guidance for anyone eager to understand the AI boom—and what comes next.

Master Machine Learning Algorithms

Download Master Machine Learning Algorithms PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 162 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Master Machine Learning Algorithms by : Jason Brownlee

Download or read book Master Machine Learning Algorithms written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2016-03-04 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: You must understand the algorithms to get good (and be recognized as being good) at machine learning. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work, then implement them from scratch, step-by-step.

The Master Algorithm

Download The Master Algorithm PDF Online Free

Author :
Publisher : Basic Books
ISBN 13 : 0465061923
Total Pages : 354 pages
Book Rating : 4.4/5 (65 download)

DOWNLOAD NOW!


Book Synopsis The Master Algorithm by : Pedro Domingos

Download or read book The Master Algorithm written by Pedro Domingos and published by Basic Books. This book was released on 2015-09-22 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.

Artificial Intelligence For Dummies

Download Artificial Intelligence For Dummies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119467586
Total Pages : 60 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence For Dummies by : John Paul Mueller

Download or read book Artificial Intelligence For Dummies written by John Paul Mueller and published by John Wiley & Sons. This book was released on 2018-03-16 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step into the future with AI The term "Artificial Intelligence" has been around since the 1950s, but a lot has changed since then. Today, AI is referenced in the news, books, movies, and TV shows, and the exact definition is often misinterpreted. Artificial Intelligence For Dummies provides a clear introduction to AI and how it’s being used today. Inside, you’ll get a clear overview of the technology, the common misconceptions surrounding it, and a fascinating look at its applications in everything from self-driving cars and drones to its contributions in the medical field. Learn about what AI has contributed to society Explore uses for AI in computer applications Discover the limits of what AI can do Find out about the history of AI The world of AI is fascinating—and this hands-on guide makes it more accessible than ever!

ChatGPT Mastery Made Simple for Beginners

Download ChatGPT Mastery Made Simple for Beginners PDF Online Free

Author :
Publisher : Alex Harper
ISBN 13 :
Total Pages : 104 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis ChatGPT Mastery Made Simple for Beginners by : Alex Harper

Download or read book ChatGPT Mastery Made Simple for Beginners written by Alex Harper and published by Alex Harper. This book was released on with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: ChatGPT is a tool that simplifies tedious tasks such as collecting ideas, planning your next big project, and writing emails. It sounds magical, doesn't it? It's not. This isn’t just another AI guide—it’s the solution to finally making ChatGPT work for you. In no time, you’ll go from beginner to confident user without the hassle of complicated instructions or tech jargon. Think about how much time you spend on writing, brainstorming, or organizing your thoughts. With ChatGPT, those tasks take less time and effort. This book shows you how, with simple steps that break down everything from the basics to advanced tricks, all in plain language. Plus, it comes with a bonus of 200+ prompts to help you tackle emails, generate ideas, or automate tasks seamlessly. Imagine how much more you could get done with ChatGPT helping you every step of the way. Whether you’re a business owner, creative, or just someone looking to make life easier, this book gives you the tools to use ChatGPT effectively. Why struggle when you don’t have to? Grab your copy of ChatGPT Mastery Made Simple for Beginners today, and start using ChatGPT to simplify tasks and boost your creativity. Click Buy Now to start making a difference in your daily life.

Artificial Intelligence with Python

Download Artificial Intelligence with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1786469677
Total Pages : 437 pages
Book Rating : 4.7/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence with Python by : Prateek Joshi

Download or read book Artificial Intelligence with Python written by Prateek Joshi and published by Packt Publishing Ltd. This book was released on 2017-01-27 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.

The Executive's How-To Guide to Automation

Download The Executive's How-To Guide to Automation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319997890
Total Pages : 163 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis The Executive's How-To Guide to Automation by : George E. Danner

Download or read book The Executive's How-To Guide to Automation written by George E. Danner and published by Springer. This book was released on 2018-12-17 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: From driverless cars to pilotless planes, many functions that have previously required human labor can now be performed using artificial intelligence. For businesses, this use of AI results in reduced labor costs and, even more important, creating a competitive advantage. How does one look at any organization and begin the work of automating it in sensible ways? This book provides the blueprint for automating critical business functions of all kinds. It outlines the skills and technologies that must be brought to bear on replicating human-like thinking and judgment in the form of algorithms. Many believe that algorithm design is the exclusive purview of computer scientists and experienced programmers. This book aims to dispel that notion. An algorithm is merely a set of rules, and anyone with the ability to envision how different components of a business can interact with other components already has the ability to work in algorithms. Though many fear that the use of automation in business means human labor will no longer be needed, the author argues that organizations will re-purpose humans into different roles under the banner of automation, not simply get rid of them. He also identifies parts of business that are best targeted for automation. This book will arm business people with the tools needed to automate companies, making them perform better, move faster, operate cheaper, and provide great lasting value to investors.

Lifelong Machine Learning, Second Edition

Download Lifelong Machine Learning, Second Edition PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015819
Total Pages : 187 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Lifelong Machine Learning, Second Edition by : Zhiyuan Sun

Download or read book Lifelong Machine Learning, Second Edition written by Zhiyuan Sun and published by Springer Nature. This book was released on 2022-06-01 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.

The Elements of Statistical Learning

Download The Elements of Statistical Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387216065
Total Pages : 545 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis The Elements of Statistical Learning by : Trevor Hastie

Download or read book The Elements of Statistical Learning written by Trevor Hastie and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Machine Learning for Algorithmic Trading

Download Machine Learning for Algorithmic Trading PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839216786
Total Pages : 822 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Algorithmic Trading by : Stefan Jansen

Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Mastering Artificial Intelligence for Beginner's 101

Download Mastering Artificial Intelligence for Beginner's 101 PDF Online Free

Author :
Publisher : Independently Published
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.3/5 (337 download)

DOWNLOAD NOW!


Book Synopsis Mastering Artificial Intelligence for Beginner's 101 by : Azai Hung

Download or read book Mastering Artificial Intelligence for Beginner's 101 written by Azai Hung and published by Independently Published. This book was released on 2024-07-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mastering Artificial Intelligence Discover the secrets of AI and transform your career with this comprehensive step-by-step guide. Learn the fundamentals of Machine Learning, Deep Learning, and Neural Networks from scratch. Perfect for beginners, this tutorial takes you by the hand and walks you through the basics of AI, from understanding the concepts to building your own intelligent systems. With this tutorial, you'll learn: - The basics of Artificial Intelligence and its applications - How to build intelligent systems using Machine Learning and Deep Learning - The fundamentals of Neural Networks and how to implement them - How to get started with AI and start building your own projects Don't miss out on this opportunity to unlock the power of AI and transform your career. Start learning today and become an AI expert in no time!

Deploying Machine Learning

Download Deploying Machine Learning PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 9780135226209
Total Pages : 99998 pages
Book Rating : 4.2/5 (262 download)

DOWNLOAD NOW!


Book Synopsis Deploying Machine Learning by : Robbie Allen

Download or read book Deploying Machine Learning written by Robbie Allen and published by Addison-Wesley Professional. This book was released on 2019-05 with total page 99998 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.

Basics of Linear Algebra for Machine Learning

Download Basics of Linear Algebra for Machine Learning PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 211 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Basics of Linear Algebra for Machine Learning by : Jason Brownlee

Download or read book Basics of Linear Algebra for Machine Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-01-24 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this laser-focused Ebook, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more.