Machine Learning with the Elastic Stack

Download Machine Learning with the Elastic Stack PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788471776
Total Pages : 299 pages
Book Rating : 4.7/5 (884 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with the Elastic Stack by : Rich Collier

Download or read book Machine Learning with the Elastic Stack written by Rich Collier and published by Packt Publishing Ltd. This book was released on 2019-01-31 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage Elastic Stack’s machine learning features to gain valuable insight from your data Key FeaturesCombine machine learning with the analytic capabilities of Elastic StackAnalyze large volumes of search data and gain actionable insight from themUse external analytical tools with your Elastic Stack to improve its performanceBook Description Machine Learning with the Elastic Stack is a comprehensive overview of the embedded commercial features of anomaly detection and forecasting. The book starts with installing and setting up Elastic Stack. You will perform time series analysis on varied kinds of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you will deploy machine learning within the Elastic Stack for logging, security, and metrics. In the concluding chapters, you will see how machine learning jobs can be automatically distributed and managed across the Elasticsearch cluster and made resilient to failure. By the end of this book, you will understand the performance aspects of incorporating machine learning within the Elastic ecosystem and create anomaly detection jobs and view results from Kibana directly. What you will learnInstall the Elastic Stack to use machine learning featuresUnderstand how Elastic machine learning is used to detect a variety of anomaly typesApply effective anomaly detection to IT operations and security analyticsLeverage the output of Elastic machine learning in custom views, dashboards, and proactive alertingCombine your created jobs to correlate anomalies of different layers of infrastructureLearn various tips and tricks to get the most out of Elastic machine learningWho this book is for If you are a data professional eager to gain insight on Elasticsearch data without having to rely on a machine learning specialist or custom development, Machine Learning with the Elastic Stack is for you. Those looking to integrate machine learning within their search and analytics applications will also find this book very useful. Prior experience with the Elastic Stack is needed to get the most out of this book.

Learning Elastic Stack 7.0

Download Learning Elastic Stack 7.0 PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789958539
Total Pages : 461 pages
Book Rating : 4.7/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Learning Elastic Stack 7.0 by : Pranav Shukla

Download or read book Learning Elastic Stack 7.0 written by Pranav Shukla and published by Packt Publishing Ltd. This book was released on 2019-05-31 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: A beginner's guide to storing, managing, and analyzing data with the updated features of Elastic 7.0 Key FeaturesGain access to new features and updates introduced in Elastic Stack 7.0Grasp the fundamentals of Elastic Stack including Elasticsearch, Logstash, and KibanaExplore useful tips for using Elastic Cloud and deploying Elastic Stack in production environmentsBook Description The Elastic Stack is a powerful combination of tools for techniques such as distributed search, analytics, logging, and visualization of data. Elastic Stack 7.0 encompasses new features and capabilities that will enable you to find unique insights into analytics using these techniques. This book will give you a fundamental understanding of what the stack is all about, and help you use it efficiently to build powerful real-time data processing applications. The first few sections of the book will help you understand how to set up the stack by installing tools, and exploring their basic configurations. You’ll then get up to speed with using Elasticsearch for distributed searching and analytics, Logstash for logging, and Kibana for data visualization. As you work through the book, you will discover the technique of creating custom plugins using Kibana and Beats. This is followed by coverage of the Elastic X-Pack, a useful extension for effective security and monitoring. You’ll also find helpful tips on how to use Elastic Cloud and deploy Elastic Stack in production environments. By the end of this book, you’ll be well versed with the fundamental Elastic Stack functionalities and the role of each component in the stack to solve different data processing problems. What you will learnInstall and configure an Elasticsearch architectureSolve the full-text search problem with ElasticsearchDiscover powerful analytics capabilities through aggregations using ElasticsearchBuild a data pipeline to transfer data from a variety of sources into Elasticsearch for analysisCreate interactive dashboards for effective storytelling with your data using KibanaLearn how to secure, monitor and use Elastic Stack’s alerting and reporting capabilitiesTake applications to an on-premise or cloud-based production environment with Elastic StackWho this book is for This book is for entry-level data professionals, software engineers, e-commerce developers, and full-stack developers who want to learn about Elastic Stack and how the real-time processing and search engine works for business analytics and enterprise search applications. Previous experience with Elastic Stack is not required, however knowledge of data warehousing and database concepts will be helpful.

Machine Learning with the Elastic Stack - Second Edition

Download Machine Learning with the Elastic Stack - Second Edition PDF Online Free

Author :
Publisher :
ISBN 13 : 9781801070034
Total Pages : 450 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with the Elastic Stack - Second Edition by : Rich Collier

Download or read book Machine Learning with the Elastic Stack - Second Edition written by Rich Collier and published by . This book was released on 2021-05-28 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover expert techniques for combining machine learning with the analytic capabilities of Elastic Stack and uncover actionable insights from your data Key Features: Integrate machine learning with distributed search and analytics Preprocess and analyze large volumes of search data effortlessly Operationalize machine learning in a scalable, production-worthy way Book Description: Elastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection. The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with. By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform. What You Will Learn: Find out how to enable the ML commercial feature in the Elastic Stack Understand how Elastic machine learning is used to detect different types of anomalies and make predictions Apply effective anomaly detection to IT operations, security analytics, and other use cases Utilize the results of Elastic ML in custom views, dashboards, and proactive alerting Train and deploy supervised machine learning models for real-time inference Discover various tips and tricks to get the most out of Elastic machine learning Who this book is for: If you're a data professional looking to gain insights into Elasticsearch data without having to rely on a machine learning specialist or custom development, then this Elastic Stack machine learning book is for you. You'll also find this book useful if you want to integrate machine learning with your observability, security, and analytics applications. Working knowledge of the Elastic Stack is needed to get the most out of this book.

Elasticsearch in Action, Second Edition

Download Elasticsearch in Action, Second Edition PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617299855
Total Pages : 590 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Elasticsearch in Action, Second Edition by : Madhusudhan Konda

Download or read book Elasticsearch in Action, Second Edition written by Madhusudhan Konda and published by Simon and Schuster. This book was released on 2023-10-31 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build powerful, production-ready search applications using the incredible features of Elasticsearch. In Elasticsearch in Action, Second Edition you will discover: Architecture, concepts, and fundamentals of Elasticsearch Installing, configuring, and running Elasticsearch and Kibana Creating an index with custom settings Data types, mapping fundamentals, and templates Fundamentals of text analysis and working with text analyzers Indexing, deleting, and updating documents Indexing data in bulk, and reindexing and aliasing operations Learning search concepts, relevancy scores, and similarity algorithms Elasticsearch in Action, Second Edition teaches you to build scalable search applications using Elasticsearch. This completely new edition explores Elasticsearch fundamentals from the ground up. You’ll deep dive into design principles, search architectures, and Elasticsearch’s essential APIs. Every chapter is clearly illustrated with diagrams and hands-on examples. You’ll even explore real-world use cases for full text search, data visualizations, and machine learning. Plus, its comprehensive nature means you’ll keep coming back to the book as a handy reference! Foreword by Shay Banon. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Create fully professional-grade search engines with Elasticsearch and Kibana! Rewritten for the latest version of Elasticsearch, this practical book explores Elasticsearch’s high-level architecture, reveals infrastructure patterns, and walks through the search and analytics capabilities of numerous Elasticsearch APIs. About the book Elasticsearch in Action, Second Edition teaches you how to add modern search features to websites and applications using Elasticsearch 8. In it, you’ll quickly progress from the basics of installation and configuring clusters, to indexing documents, advanced aggregations, and putting your servers into production. You’ll especially appreciate the mix of technical detail with techniques for designing great search experiences. What's inside Understanding search architecture Full text and term-level search queries Analytics and aggregations High-level visualizations in Kibana Configure, scale, and tune clusters About the reader For application developers comfortable with scripting and command-line applications. About the author Madhusudhan Konda is a full-stack lead engineer, architect, mentor, and conference speaker. He delivers live online training on Elasticsearch and the Elastic Stack. Table of Contents 1 Overview 2 Getting started 3 Architecture 4 Mapping 5 Working with documents 6 Indexing operations 7 Text analysis 8 Introducing search 9 Term-level search 10 Full-text searches 11 Compound queries 12 Advanced search 13 Aggregations 14 Administration 15 Performance and troubleshooting

Machine Learning with the Elastic Stack

Download Machine Learning with the Elastic Stack PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801078467
Total Pages : 450 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with the Elastic Stack by : Rich Collier

Download or read book Machine Learning with the Elastic Stack written by Rich Collier and published by Packt Publishing Ltd. This book was released on 2021-05-31 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover expert techniques for combining machine learning with the analytic capabilities of Elastic Stack and uncover actionable insights from your data Key FeaturesIntegrate machine learning with distributed search and analyticsPreprocess and analyze large volumes of search data effortlesslyOperationalize machine learning in a scalable, production-worthy wayBook Description Elastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection. The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with. By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform. What you will learnFind out how to enable the ML commercial feature in the Elastic StackUnderstand how Elastic machine learning is used to detect different types of anomalies and make predictionsApply effective anomaly detection to IT operations, security analytics, and other use casesUtilize the results of Elastic ML in custom views, dashboards, and proactive alertingTrain and deploy supervised machine learning models for real-time inferenceDiscover various tips and tricks to get the most out of Elastic machine learningWho this book is for If you’re a data professional looking to gain insights into Elasticsearch data without having to rely on a machine learning specialist or custom development, then this Elastic Stack machine learning book is for you. You'll also find this book useful if you want to integrate machine learning with your observability, security, and analytics applications. Working knowledge of the Elastic Stack is needed to get the most out of this book.

Learning ELK Stack

Download Learning ELK Stack PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785886703
Total Pages : 206 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Learning ELK Stack by : Saurabh Chhajed

Download or read book Learning ELK Stack written by Saurabh Chhajed and published by Packt Publishing Ltd. This book was released on 2015-11-26 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build mesmerizing visualizations, analytics, and logs from your data using Elasticsearch, Logstash, and Kibana About This Book Solve all your data analytics problems with the ELK stack Explore the power of Kibana4 search and visualizations built over Elasticsearch queries and learn about the features and plugins of Logstash Develop a complete data pipeline using the ELK stack Who This Book Is For If you are a developer or DevOps engineer interested in building a system that provides amazing insights and business metrics out of data sources, of various formats and types, using the open source technology stack that ELK provides, then this book is for you. Basic knowledge of Unix or any programming language will be helpful to make the most out of this book. What You Will Learn Install, configure, and run Elasticsearch, Logstash, and Kibana Understand the need for log analytics and the current challenges in log analysis Build your own data pipeline using the ELK stack Familiarize yourself with the key features of Logstash and the variety of input, filter, and output plugins it provides Build your own custom Logstash plugin Create actionable insights using charts, histograms, and quick search features in Kibana4 Understand the role of Elasticsearch in the ELK stack In Detail The ELK stack—Elasticsearch, Logstash, and Kibana, is a powerful combination of open source tools. Elasticsearch is for deep search and data analytics. Logstash is for centralized logging, log enrichment, and parsing. Kibana is for powerful and beautiful data visualizations. In short, the Elasticsearch ELK stack makes searching and analyzing data easier than ever before. This book will introduce you to the ELK (Elasticsearch, Logstash, and Kibana) stack, starting by showing you how to set up the stack by installing the tools, and basic configuration. You'll move on to building a basic data pipeline using the ELK stack. Next, you'll explore the key features of Logstash and its role in the ELK stack, including creating Logstash plugins, which will enable you to use your own customized plugins. The importance of Elasticsearch and Kibana in the ELK stack is also covered, along with various types of advanced data analysis, and a variety of charts, tables ,and maps. Finally, by the end of the book you will be able to develop full-fledged data pipeline using the ELK stack and have a solid understanding of the role of each of the components. Style and approach This book is a step-by-step guide, complete with various examples to solve your data analytics problems by using the ELK stack to explore and visualize data.

Elasticsearch: The Definitive Guide

Download Elasticsearch: The Definitive Guide PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1449358500
Total Pages : 659 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Elasticsearch: The Definitive Guide by : Clinton Gormley

Download or read book Elasticsearch: The Definitive Guide written by Clinton Gormley and published by "O'Reilly Media, Inc.". This book was released on 2015-01-23 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whether you need full-text search or real-time analytics of structured data—or both—the Elasticsearch distributed search engine is an ideal way to put your data to work. This practical guide not only shows you how to search, analyze, and explore data with Elasticsearch, but also helps you deal with the complexities of human language, geolocation, and relationships. If you’re a newcomer to both search and distributed systems, you’ll quickly learn how to integrate Elasticsearch into your application. More experienced users will pick up lots of advanced techniques. Throughout the book, you’ll follow a problem-based approach to learn why, when, and how to use Elasticsearch features. Understand how Elasticsearch interprets data in your documents Index and query your data to take advantage of search concepts such as relevance and word proximity Handle human language through the effective use of analyzers and queries Summarize and group data to show overall trends, with aggregations and analytics Use geo-points and geo-shapes—Elasticsearch’s approaches to geolocation Model your data to take advantage of Elasticsearch’s horizontal scalability Learn how to configure and monitor your cluster in production

Threat Hunting with Elastic Stack

Download Threat Hunting with Elastic Stack PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801079803
Total Pages : 392 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Threat Hunting with Elastic Stack by : Andrew Pease

Download or read book Threat Hunting with Elastic Stack written by Andrew Pease and published by Packt Publishing Ltd. This book was released on 2021-07-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn advanced threat analysis techniques in practice by implementing Elastic Stack security features Key FeaturesGet started with Elastic Security configuration and featuresLeverage Elastic Stack features to provide optimal protection against threatsDiscover tips, tricks, and best practices to enhance the security of your environmentBook Description Threat Hunting with Elastic Stack will show you how to make the best use of Elastic Security to provide optimal protection against cyber threats. With this book, security practitioners working with Kibana will be able to put their knowledge to work and detect malicious adversary activity within their contested network. You'll take a hands-on approach to learning the implementation and methodologies that will have you up and running in no time. Starting with the foundational parts of the Elastic Stack, you'll explore analytical models and how they support security response and finally leverage Elastic technology to perform defensive cyber operations. You'll then cover threat intelligence analytical models, threat hunting concepts and methodologies, and how to leverage them in cyber operations. After you've mastered the basics, you'll apply the knowledge you've gained to build and configure your own Elastic Stack, upload data, and explore that data directly as well as by using the built-in tools in the Kibana app to hunt for nefarious activities. By the end of this book, you'll be able to build an Elastic Stack for self-training or to monitor your own network and/or assets and use Kibana to monitor and hunt for adversaries within your network. What you will learnExplore cyber threat intelligence analytical models and hunting methodologiesBuild and configure Elastic Stack for cyber threat huntingLeverage the Elastic endpoint and Beats for data collectionPerform security data analysis using the Kibana Discover, Visualize, and Dashboard appsExecute hunting and response operations using the Kibana Security appUse Elastic Common Schema to ensure data uniformity across organizationsWho this book is for Security analysts, cybersecurity enthusiasts, information systems security staff, or anyone who works with the Elastic Stack for security monitoring, incident response, intelligence analysis, or threat hunting will find this book useful. Basic working knowledge of IT security operations and network and endpoint systems is necessary to get started.

Mastering Elastic Stack

Download Mastering Elastic Stack PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1786468050
Total Pages : 517 pages
Book Rating : 4.7/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Mastering Elastic Stack by : Yuvraj Gupta

Download or read book Mastering Elastic Stack written by Yuvraj Gupta and published by Packt Publishing Ltd. This book was released on 2017-02-28 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get the most out of the Elastic Stack for various complex analytics using this comprehensive and practical guide About This Book Your one-stop solution to perform advanced analytics with Elasticsearch, Logstash, and Kibana Learn how to make better sense of your data by searching, analyzing, and logging data in a systematic way This highly practical guide takes you through an advanced implementation on the ELK stack in your enterprise environment Who This Book Is For This book cater to developers using the Elastic stack in their day-to-day work who are familiar with the basics of Elasticsearch, Logstash, and Kibana, and now want to become an expert at using the Elastic stack for data analytics. What You Will Learn Build a pipeline with help of Logstash and Beats to visualize Elasticsearch data in Kibana Use Beats to ship any type of data to the Elastic stack Understand Elasticsearch APIs, modules, and other advanced concepts Explore Logstash and it's plugins Discover how to utilize the new Kibana UI for advanced analytics See how to work with the Elastic Stack using other advanced configurations Customize the Elastic Stack and plugin development for each of the component Work with the Elastic Stack in a production environment Explore the various components of X-Pack in detail. In Detail Even structured data is useless if it can't help you to take strategic decisions and improve existing system. If you love to play with data, or your job requires you to process custom log formats, design a scalable analysis system, and manage logs to do real-time data analysis, this book is your one-stop solution. By combining the massively popular Elasticsearch, Logstash, Beats, and Kibana, elastic.co has advanced the end-to-end stack that delivers actionable insights in real time from almost any type of structured or unstructured data source. If your job requires you to process custom log formats, design a scalable analysis system, explore a variety of data, and manage logs, this book is your one-stop solution. You will learn how to create real-time dashboards and how to manage the life cycle of logs in detail through real-life scenarios. This book brushes up your basic knowledge on implementing the Elastic Stack and then dives deeper into complex and advanced implementations of the Elastic Stack. We'll help you to solve data analytics challenges using the Elastic Stack and provide practical steps on centralized logging and real-time analytics with the Elastic Stack in production. You will get to grip with advanced techniques for log analysis and visualization. Newly announced features such as Beats and X-Pack are also covered in detail with examples. Toward the end, you will see how to use the Elastic stack for real-world case studies and we'll show you some best practices and troubleshooting techniques for the Elastic Stack. Style and approach This practical guide shows you how to perform advanced analytics with the Elastic stack through real-world use cases. It includes common and some not so common scenarios to use the Elastic stack for data analysis.

Advanced Elasticsearch 7.0

Download Advanced Elasticsearch 7.0 PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789956560
Total Pages : 538 pages
Book Rating : 4.7/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Advanced Elasticsearch 7.0 by : Wai Tak Wong

Download or read book Advanced Elasticsearch 7.0 written by Wai Tak Wong and published by Packt Publishing Ltd. This book was released on 2019-08-23 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the intricacies of Elasticsearch 7.0 and use it to create flexible and scalable search solutions Key FeaturesMaster the latest distributed search and analytics capabilities of Elasticsearch 7.0Perform searching, indexing, and aggregation of your data at scaleDiscover tips and techniques for speeding up your search query performanceBook Description Building enterprise-grade distributed applications and executing systematic search operations call for a strong understanding of Elasticsearch and expertise in using its core APIs and latest features. This book will help you master the advanced functionalities of Elasticsearch and understand how you can develop a sophisticated, real-time search engine confidently. In addition to this, you'll also learn to run machine learning jobs in Elasticsearch to speed up routine tasks. You'll get started by learning to use Elasticsearch features on Hadoop and Spark and make search results faster, thereby improving the speed of query results and enhancing the customer experience. You'll then get up to speed with performing analytics by building a metrics pipeline, defining queries, and using Kibana for intuitive visualizations that help provide decision-makers with better insights. The book will later guide you through using Logstash with examples to collect, parse, and enrich logs before indexing them in Elasticsearch. By the end of this book, you will have comprehensive knowledge of advanced topics such as Apache Spark support, machine learning using Elasticsearch and scikit-learn, and real-time analytics, along with the expertise you need to increase business productivity, perform analytics, and get the very best out of Elasticsearch. What you will learnPre-process documents before indexing in ingest pipelinesLearn how to model your data in the real worldGet to grips with using Elasticsearch for exploratory data analysisUnderstand how to build analytics and RESTful servicesUse Kibana, Logstash, and Beats for dashboard applicationsGet up to speed with Spark and Elasticsearch for real-time analyticsExplore the basics of Spring Data Elasticsearch, and understand how to index, search, and query in a Spring applicationWho this book is for This book is for Elasticsearch developers and data engineers who want to take their basic knowledge of Elasticsearch to the next level and use it to build enterprise-grade distributed search applications. Prior experience of working with Elasticsearch will be useful to get the most out of this book.

The Logstash Book

Download The Logstash Book PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0988820226
Total Pages : 262 pages
Book Rating : 4.9/5 (888 download)

DOWNLOAD NOW!


Book Synopsis The Logstash Book by : James Turnbull

Download or read book The Logstash Book written by James Turnbull and published by Lulu.com. This book was released on 2014-12-22 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new book designed for SysAdmins, Operations staff, Developers and DevOps who are interested in deploying a log management solution using the open source tool Logstash. In this book we will walk you through installing, deploying, managing and extending Logstash. We'll teach you how to: * Install and deploy Logstash. * Ship events from a Logstash Shipper to a central Logstash server. * Filter incoming events using a variety of techniques. * Output those events to a selection of useful destinations. * Use Logstash's awesome web interface Kibana. * Scale out your Logstash implementation as your environment grows. * Quickly and easily extend Logstash to deliver additional functionality you might need. By the end of the book you should have a functional and effective log management solution that you can deploy into your own environment.

Machine Learning Refined

Download Machine Learning Refined PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108480721
Total Pages : 597 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Refined by : Jeremy Watt

Download or read book Machine Learning Refined written by Jeremy Watt and published by Cambridge University Press. This book was released on 2020-01-09 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Hands-On Machine Learning with R

Download Hands-On Machine Learning with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730433
Total Pages : 373 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Machine Learning with R by : Brad Boehmke

Download or read book Hands-On Machine Learning with R written by Brad Boehmke and published by CRC Press. This book was released on 2019-11-07 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

Elasticsearch in Action

Download Elasticsearch in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638353190
Total Pages : 702 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Elasticsearch in Action by : Roy Russo

Download or read book Elasticsearch in Action written by Roy Russo and published by Simon and Schuster. This book was released on 2015-11-17 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Elasticsearch in Action teaches you how to build scalable search applications using Elasticsearch. You'll ramp up fast, with an informative overview and an engaging introductory example. Within the first few chapters, you'll pick up the core concepts you need to implement basic searches and efficient indexing. With the fundamentals well in hand, you'll go on to gain an organized view of how to optimize your design. Perfect for developers and administrators building and managing search-oriented applications. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Modern search seems like magic—you type a few words and the search engine appears to know what you want. With the Elasticsearch real-time search and analytics engine, you can give your users this magical experience without having to do complex low-level programming or understand advanced data science algorithms. You just install it, tweak it, and get on with your work. About the Book Elasticsearch in Action teaches you how to write applications that deliver professional quality search. As you read, you'll learn to add basic search features to any application, enhance search results with predictive analysis and relevancy ranking, and use saved data from prior searches to give users a custom experience. This practical book focuses on Elasticsearch's REST API via HTTP. Code snippets are written mostly in bash using cURL, so they're easily translatable to other languages. What's Inside What is a great search application? Building scalable search solutions Using Elasticsearch with any language Configuration and tuning About the Reader For developers and administrators building and managing search-oriented applications. About the Authors Radu Gheorghe is a search consultant and software engineer. Matthew Lee Hinman develops highly available, cloud-based systems. Roy Russo is a specialist in predictive analytics. Table of Contents PART 1 CORE ELASTICSEARCH FUNCTIONALITY Introducing Elasticsearch Diving into the functionality Indexing, updating, and deleting data Searching your data Analyzing your data Searching with relevancy Exploring your data with aggregations Relations among documents PART 2 ADVANCED ELASTICSEARCH FUNCTIONALITY Scaling out Improving performance Administering your cluster

Learn Amazon SageMaker

Download Learn Amazon SageMaker PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800203594
Total Pages : 490 pages
Book Rating : 4.8/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Learn Amazon SageMaker by : Julien Simon

Download or read book Learn Amazon SageMaker written by Julien Simon and published by Packt Publishing Ltd. This book was released on 2020-08-27 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quickly build and deploy machine learning models without managing infrastructure, and improve productivity using Amazon SageMaker’s capabilities such as Amazon SageMaker Studio, Autopilot, Experiments, Debugger, and Model Monitor Key FeaturesBuild, train, and deploy machine learning models quickly using Amazon SageMakerAnalyze, detect, and receive alerts relating to various business problems using machine learning algorithms and techniquesImprove productivity by training and fine-tuning machine learning models in productionBook Description Amazon SageMaker enables you to quickly build, train, and deploy machine learning (ML) models at scale, without managing any infrastructure. It helps you focus on the ML problem at hand and deploy high-quality models by removing the heavy lifting typically involved in each step of the ML process. This book is a comprehensive guide for data scientists and ML developers who want to learn the ins and outs of Amazon SageMaker. You’ll understand how to use various modules of SageMaker as a single toolset to solve the challenges faced in ML. As you progress, you’ll cover features such as AutoML, built-in algorithms and frameworks, and the option for writing your own code and algorithms to build ML models. Later, the book will show you how to integrate Amazon SageMaker with popular deep learning libraries such as TensorFlow and PyTorch to increase the capabilities of existing models. You’ll also learn to get the models to production faster with minimum effort and at a lower cost. Finally, you’ll explore how to use Amazon SageMaker Debugger to analyze, detect, and highlight problems to understand the current model state and improve model accuracy. By the end of this Amazon book, you’ll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation. What you will learnCreate and automate end-to-end machine learning workflows on Amazon Web Services (AWS)Become well-versed with data annotation and preparation techniquesUse AutoML features to build and train machine learning models with AutoPilotCreate models using built-in algorithms and frameworks and your own codeTrain computer vision and NLP models using real-world examplesCover training techniques for scaling, model optimization, model debugging, and cost optimizationAutomate deployment tasks in a variety of configurations using SDK and several automation toolsWho this book is for This book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. Some understanding of machine learning concepts and the Python programming language will also be beneficial.

Machine Learning Solutions

Download Machine Learning Solutions PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788398890
Total Pages : 567 pages
Book Rating : 4.7/5 (883 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Solutions by : Jalaj Thanaki

Download or read book Machine Learning Solutions written by Jalaj Thanaki and published by Packt Publishing Ltd. This book was released on 2018-04-27 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical, hands-on solutions in Python to overcome any problem in Machine Learning Key Features Master the advanced concepts, methodologies, and use cases of machine learning Build ML applications for analytics, NLP and computer vision domains Solve the most common problems in building machine learning models Book Description Machine learning (ML) helps you find hidden insights from your data without the need for explicit programming. This book is your key to solving any kind of ML problem you might come across in your job. You’ll encounter a set of simple to complex problems while building ML models, and you'll not only resolve these problems, but you’ll also learn how to build projects based on each problem, with a practical approach and easy-to-follow examples. The book includes a wide range of applications: from analytics and NLP, to computer vision domains. Some of the applications you will be working on include stock price prediction, a recommendation engine, building a chat-bot, a facial expression recognition system, and many more. The problem examples we cover include identifying the right algorithm for your dataset and use cases, creating and labeling datasets, getting enough clean data to carry out processing, identifying outliers, overftting datasets, hyperparameter tuning, and more. Here, you'll also learn to make more timely and accurate predictions. In addition, you'll deal with more advanced use cases, such as building a gaming bot, building an extractive summarization tool for medical documents, and you'll also tackle the problems faced while building an ML model. By the end of this book, you'll be able to fine-tune your models as per your needs to deliver maximum productivity. What you will learn Select the right algorithm to derive the best solution in ML domains Perform predictive analysis effciently using ML algorithms Predict stock prices using the stock index value Perform customer analytics for an e-commerce platform Build recommendation engines for various domains Build NLP applications for the health domain Build language generation applications using different NLP techniques Build computer vision applications such as facial emotion recognition Who this book is for This book is for the intermediate users such as machine learning engineers, data engineers, data scientists, and more, who want to solve simple to complex machine learning problems in their day-to-day work and build powerful and efficient machine learning models. A basic understanding of the machine learning concepts and some experience with Python programming is all you need to get started with this book.

Machine Learning with Amazon SageMaker Cookbook

Download Machine Learning with Amazon SageMaker Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800566123
Total Pages : 763 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with Amazon SageMaker Cookbook by : Joshua Arvin Lat

Download or read book Machine Learning with Amazon SageMaker Cookbook written by Joshua Arvin Lat and published by Packt Publishing Ltd. This book was released on 2021-10-29 with total page 763 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step solution-based guide to preparing building, training, and deploying high-quality machine learning models with Amazon SageMaker Key FeaturesPerform ML experiments with built-in and custom algorithms in SageMakerExplore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learnUse the different features and capabilities of SageMaker to automate relevant ML processesBook Description Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems. This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams. By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems. What you will learnTrain and deploy NLP, time series forecasting, and computer vision models to solve different business problemsPush the limits of customization in SageMaker using custom container imagesUse AutoML capabilities with SageMaker Autopilot to create high-quality modelsWork with effective data analysis and preparation techniquesExplore solutions for debugging and managing ML experiments and deploymentsDeal with bias detection and ML explainability requirements using SageMaker ClarifyAutomate intermediate and complex deployments and workflows using a variety of solutionsWho this book is for This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.