Artificial Intelligence in Healthcare

Download Artificial Intelligence in Healthcare PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128184396
Total Pages : 385 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Healthcare by : Adam Bohr

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

MACHINE LEARNING FOR HEALTHCARE: PREDICTIVE ANALYTICS AND PERSONALIZED MEDICINE

Download MACHINE LEARNING FOR HEALTHCARE: PREDICTIVE ANALYTICS AND PERSONALIZED MEDICINE PDF Online Free

Author :
Publisher : Xoffencerpublication
ISBN 13 : 8196401868
Total Pages : 241 pages
Book Rating : 4.1/5 (964 download)

DOWNLOAD NOW!


Book Synopsis MACHINE LEARNING FOR HEALTHCARE: PREDICTIVE ANALYTICS AND PERSONALIZED MEDICINE by : Dr. G. Vishnuvarthanan

Download or read book MACHINE LEARNING FOR HEALTHCARE: PREDICTIVE ANALYTICS AND PERSONALIZED MEDICINE written by Dr. G. Vishnuvarthanan and published by Xoffencerpublication. This book was released on 2023-07-03 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the discipline of healthcare informatics, the study of how data relevant to healthcare may be obtained, transmitted, processed, stored, and retrieved is known as the study of how data can be gathered, transferred, processed, stored, and retrieved. In this area of study, early sickness prevention, early illness detection, early illness diagnosis, and early illness therapy are all crucial components. In the subject of healthcare informatics, the only types of data that are considered trustworthy are those that belong to illnesses, patient histories, and the computer operations that are required in order to analyze this data. Conventional medical practices all across the United States have made significant investments in cutting-edge technology and computational infrastructure over the course of the previous two decades in order to improve their potential to support academic institutions, medical experts, and patients. There has been a large investment of resources made in order to increase the quality of medical care that can be provided by utilizing a variety of different options, and this improvement has been made possible as a result of the expenditure. The impetus for all of these numerous programs was the overriding objective of giving patients with access to healthcare that is not only reasonably priced and of excellent quality, but also completely and wholly free of any and all fear. This goal was the driving force behind all of these many programs. As a direct result of these efforts, the benefits and usefulness of applying computational tools to help with referrals and prescriptions, to set up and manage electronic health records (EHR), and to make technical advancements in digital medical imaging have become more obvious. This is particularly the case with regard to electronic health records (EHR), which are becoming increasingly prevalent. This is a direct consequence of the fact that the benefits of utilizing computational tools have been more readily apparent in recent times. With the aid of these technologies, electronic health records (EHR) are something that can be set up and managed.

Precision Medicine and Artificial Intelligence

Download Precision Medicine and Artificial Intelligence PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 032385432X
Total Pages : 302 pages
Book Rating : 4.3/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Precision Medicine and Artificial Intelligence by : Michael Mahler

Download or read book Precision Medicine and Artificial Intelligence written by Michael Mahler and published by Academic Press. This book was released on 2021-03-12 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precision Medicine and Artificial Intelligence: The Perfect Fit for Autoimmunity covers background on artificial intelligence (AI), its link to precision medicine (PM), and examples of AI in healthcare, especially autoimmunity. The book highlights future perspectives and potential directions as AI has gained significant attention during the past decade. Autoimmune diseases are complex and heterogeneous conditions, but exciting new developments and implementation tactics surrounding automated systems have enabled the generation of large datasets, making autoimmunity an ideal target for AI and precision medicine. More and more diagnostic products utilize AI, which is also starting to be supported by regulatory agencies such as the Food and Drug Administration (FDA). Knowledge generation by leveraging large datasets including demographic, environmental, clinical and biomarker data has the potential to not only impact the diagnosis of patients, but also disease prediction, prognosis and treatment options. - Allows the readers to gain an overview on precision medicine for autoimmune diseases leveraging AI solutions - Provides background, milestone and examples of precision medicine - Outlines the paradigm shift towards precision medicine driven by value-based systems - Discusses future applications of precision medicine research using AI - Other aspects covered in the book include regulatory insights, data analytics and visualization, types of biomarkers as well as the role of the patient in precision medicine

Artificial Intelligence and Machine Learning in Healthcare

Download Artificial Intelligence and Machine Learning in Healthcare PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811608113
Total Pages : 228 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Machine Learning in Healthcare by : Ankur Saxena

Download or read book Artificial Intelligence and Machine Learning in Healthcare written by Ankur Saxena and published by Springer Nature. This book was released on 2021-05-06 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the application of artificial intelligence and machine learning in healthcare. It discusses integrating the principles of computer science, life science, and statistics incorporated into statistical models using existing data, discovering patterns in data to extract the information, and predicting the changes and diseases based on this data and models. The initial chapters of the book cover the practical applications of artificial intelligence for disease prognosis & management. Further, the role of artificial intelligence and machine learning is discussed with reference to specific diseases like diabetes mellitus, cancer, mycobacterium tuberculosis, and Covid-19. The chapters provide working examples on how different types of healthcare data can be used to develop models and predict diseases using machine learning and artificial intelligence. The book also touches upon precision medicine, personalized medicine, and transfer learning, with the real examples. Further, it also discusses the use of machine learning and artificial intelligence for visualization, prediction, detection, and diagnosis of Covid -19. This book is a valuable source of information for programmers, healthcare professionals, and researchers interested in understanding the applications of artificial intelligence and machine learning in healthcare.

Demystifying Big Data and Machine Learning for Healthcare

Download Demystifying Big Data and Machine Learning for Healthcare PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315389304
Total Pages : 227 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Demystifying Big Data and Machine Learning for Healthcare by : Prashant Natarajan

Download or read book Demystifying Big Data and Machine Learning for Healthcare written by Prashant Natarajan and published by CRC Press. This book was released on 2017-02-15 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Leveraging Data Science for Global Health

Download Leveraging Data Science for Global Health PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030479943
Total Pages : 471 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Leveraging Data Science for Global Health by : Leo Anthony Celi

Download or read book Leveraging Data Science for Global Health written by Leo Anthony Celi and published by Springer Nature. This book was released on 2020-07-31 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications

Download Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000533972
Total Pages : 332 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications by : Om Prakash Jena

Download or read book Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications written by Om Prakash Jena and published by CRC Press. This book was released on 2022-02-25 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications introduces and explores a variety of schemes designed to empower, enhance, and represent multi-institutional and multi-disciplinary machine learning (ML) and deep learning (DL) research in healthcare paradigms. Serving as a unique compendium of existing and emerging ML/DL paradigms for the healthcare sector, this book demonstrates the depth, breadth, complexity, and diversity of this multi-disciplinary area. It provides a comprehensive overview of ML/DL algorithms and explores the related use cases in enterprises such as computer-aided medical diagnostics, drug discovery and development, medical imaging, automation, robotic surgery, electronic smart records creation, outbreak prediction, medical image analysis, and radiation treatments. This book aims to endow different communities with the innovative advances in theory, analytical results, case studies, numerical simulation, modeling, and computational structuring in the field of ML/DL models for healthcare applications. It will reveal different dimensions of ML/DL applications and will illustrate their use in the solution of assorted real-world biomedical and healthcare problems. Features: Covers the fundamentals of ML and DL in the context of healthcare applications Discusses various data collection approaches from various sources and how to use them in ML/DL models Integrates several aspects of AI-based computational intelligence such as ML and DL from diversified perspectives which describe recent research trends and advanced topics in the field Explores the current and future impacts of pandemics and risk mitigation in healthcare with advanced analytics Emphasizes feature selection as an important step in any accurate model simulation where ML/DL methods are used to help train the system and extract the positive solution implicitly This book is a valuable source of information for researchers, scientists, healthcare professionals, programmers, and graduate-level students interested in understanding the applications of ML/DL in healthcare scenarios. Dr. Om Prakash Jena is an Assistant Professor in the Department of Computer Science, Ravenshaw University, Cuttack, Odisha, India. Dr. Bharat Bhushan is an Assistant Professor of Department of Computer Science and Engineering (CSE) at the School of Engineering and Technology, Sharda University, Greater Noida, India. Dr. Utku Kose is an Associate Professor in Suleyman Demirel University, Turkey.

Machine Learning for Healthcare Applications

Download Machine Learning for Healthcare Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119791812
Total Pages : 418 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Healthcare Applications by : Sachi Nandan Mohanty

Download or read book Machine Learning for Healthcare Applications written by Sachi Nandan Mohanty and published by John Wiley & Sons. This book was released on 2021-04-13 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Machine Learning and AI for Healthcare

Download Machine Learning and AI for Healthcare PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484237994
Total Pages : 390 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and AI for Healthcare by : Arjun Panesar

Download or read book Machine Learning and AI for Healthcare written by Arjun Panesar and published by Apress. This book was released on 2019-02-04 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.

Data Analytics in Bioinformatics

Download Data Analytics in Bioinformatics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111978560X
Total Pages : 433 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Data Analytics in Bioinformatics by : Rabinarayan Satpathy

Download or read book Data Analytics in Bioinformatics written by Rabinarayan Satpathy and published by John Wiley & Sons. This book was released on 2021-01-20 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

Machine Learning in Cardiovascular Medicine

Download Machine Learning in Cardiovascular Medicine PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128202734
Total Pages : 454 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Cardiovascular Medicine by : Subhi J. Al'Aref, M.D.

Download or read book Machine Learning in Cardiovascular Medicine written by Subhi J. Al'Aref, M.D. and published by Academic Press. This book was released on 2020-12-11 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning in Cardiovascular Medicine addresses the ever-expanding applications of artificial intelligence (AI), specifically machine learning (ML), in healthcare and within cardiovascular medicine. The book focuses on emphasizing ML for biomedical applications and provides a comprehensive summary of the past and present of AI, basics of ML, and clinical applications of ML within cardiovascular medicine for predictive analytics and precision medicine. It helps readers understand how ML works along with its limitations and strengths, such that they can could harness its computational power to streamline workflow and improve patient care. It is suitable for both clinicians and engineers; providing a template for clinicians to understand areas of application of machine learning within cardiovascular research; and assist computer scientists and engineers in evaluating current and future impact of machine learning on cardiovascular medicine. Provides an overview of machine learning, both for a clinical and engineering audience Summarize recent advances in both cardiovascular medicine and artificial intelligence Discusses the advantages of using machine learning for outcomes research and image processing Addresses the ever-expanding application of this novel technology and discusses some of the unique challenges associated with such an approach

Machine Learning with Health Care Perspective

Download Machine Learning with Health Care Perspective PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030408507
Total Pages : 418 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with Health Care Perspective by : Vishal Jain

Download or read book Machine Learning with Health Care Perspective written by Vishal Jain and published by Springer Nature. This book was released on 2020-03-09 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.

Applications of Deep Learning and Big IoT on Personalized Healthcare Services

Download Applications of Deep Learning and Big IoT on Personalized Healthcare Services PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1799821021
Total Pages : 248 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Applications of Deep Learning and Big IoT on Personalized Healthcare Services by : Wason, Ritika

Download or read book Applications of Deep Learning and Big IoT on Personalized Healthcare Services written by Wason, Ritika and published by IGI Global. This book was released on 2020-02-07 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Healthcare is an industry that has seen great advancements in personalized services through big data analytics. Despite the application of smart devices in the medical field, the mass volume of data that is being generated makes it challenging to correctly diagnose patients. This has led to the implementation of precise algorithms that can manage large amounts of information and successfully use smart living in medical environments. Professionals worldwide need relevant research on how to successfully implement these smart technologies within their own personalized healthcare processes. Applications of Deep Learning and Big IoT on Personalized Healthcare Services is a pivotal reference source that provides a collection of innovative research on the analytical methods and applications of smart algorithms for the personalized treatment of patients. While highlighting topics including cognitive computing, natural language processing, and supply chain optimization, this book is ideally designed for network designers, analysts, technology specialists, medical professionals, developers, researchers, academicians, and post-graduate students seeking relevant information on smart developments within individualized healthcare.

Machine Learning for Health Informatics

Download Machine Learning for Health Informatics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319504789
Total Pages : 503 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Health Informatics by : Andreas Holzinger

Download or read book Machine Learning for Health Informatics written by Andreas Holzinger and published by Springer. This book was released on 2016-12-09 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.

Artificial Intelligence in Medicine

Download Artificial Intelligence in Medicine PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 303021642X
Total Pages : 431 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Medicine by : David Riaño

Download or read book Artificial Intelligence in Medicine written by David Riaño and published by Springer. This book was released on 2019-06-19 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.

Machine Learning and the Internet of Medical Things in Healthcare

Download Machine Learning and the Internet of Medical Things in Healthcare PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 012823217X
Total Pages : 290 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and the Internet of Medical Things in Healthcare by : Krishna Kant Singh

Download or read book Machine Learning and the Internet of Medical Things in Healthcare written by Krishna Kant Singh and published by Academic Press. This book was released on 2021-04-14 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with the emerging platform of the Internet of Medical Things used by practitioners and researchers worldwide. The book includes deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. It also presents the concepts of the Internet of Things, the set of technologies that develops traditional devices into smart devices. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT. It also presents the application of these technologies in the development of healthcare frameworks. - Provides an introduction to the Internet of Medical Things through the principles and applications of machine learning - Explains the functions and applications of machine learning in various applications such as ultrasound imaging, biomedical signal processing, robotics, and biomechatronics - Includes coverage of the evolution of healthcare applications with machine learning, including Clinical Decision Support Systems, artificial intelligence in biomedical engineering, and AI-enabled connected health informatics, supported by real-world case studies

Computational Analysis and Deep Learning for Medical Care

Download Computational Analysis and Deep Learning for Medical Care PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119785723
Total Pages : 532 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Computational Analysis and Deep Learning for Medical Care by : Amit Kumar Tyagi

Download or read book Computational Analysis and Deep Learning for Medical Care written by Amit Kumar Tyagi and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.