Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Low Dimensional Manifolds
Download Low Dimensional Manifolds full books in PDF, epub, and Kindle. Read online Low Dimensional Manifolds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Low-Dimensional Geometry by : Francis Bonahon
Download or read book Low-Dimensional Geometry written by Francis Bonahon and published by American Mathematical Soc.. This book was released on 2009-07-14 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.
Book Synopsis Knots, Links, Braids and 3-Manifolds by : Viktor Vasilʹevich Prasolov
Download or read book Knots, Links, Braids and 3-Manifolds written by Viktor Vasilʹevich Prasolov and published by American Mathematical Soc.. This book was released on 1997 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. The mathematical prerequisites are minimal compared to other monographs in this area. Numerous figures and problems make this book suitable as a graduate level course text or for self-study.
Book Synopsis New Ideas In Low Dimensional Topology by : Vassily Olegovich Manturov
Download or read book New Ideas In Low Dimensional Topology written by Vassily Olegovich Manturov and published by World Scientific. This book was released on 2015-01-27 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.
Book Synopsis Lectures on the Topology of 3-manifolds by : Nikolai Saveliev
Download or read book Lectures on the Topology of 3-manifolds written by Nikolai Saveliev and published by Walter de Gruyter. This book was released on 1999 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Holomorphic Curves in Low Dimensions by : Chris Wendl
Download or read book Holomorphic Curves in Low Dimensions written by Chris Wendl and published by Springer. This book was released on 2018-06-28 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Book Synopsis Geometry of Low-Dimensional Manifolds: Volume 1, Gauge Theory and Algebraic Surfaces by : S. K. Donaldson
Download or read book Geometry of Low-Dimensional Manifolds: Volume 1, Gauge Theory and Algebraic Surfaces written by S. K. Donaldson and published by Cambridge University Press. This book was released on 1990 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distinguished researchers reveal the way different subjects (topology, differential and algebraic geometry and mathematical physics) interact in a text based on LMS Durham Symposium Lectures.
Book Synopsis Introduction to 3-Manifolds by : Jennifer Schultens
Download or read book Introduction to 3-Manifolds written by Jennifer Schultens and published by American Mathematical Soc.. This book was released on 2014-05-21 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of a graduate course on 3-manifolds and is intended for a mathematically experienced audience that is new to low-dimensional topology. The exposition begins with the definition of a manifold, explores possible additional structures on manifolds, discusses the classification of surfaces, introduces key foundational results for 3-manifolds, and provides an overview of knot theory. It then continues with more specialized topics by briefly considering triangulations of 3-manifolds, normal surface theory, and Heegaard splittings. The book finishes with a discussion of topics relevant to viewing 3-manifolds via the curve complex. With about 250 figures and more than 200 exercises, this book can serve as an excellent overview and starting point for the study of 3-manifolds.
Book Synopsis Low Dimensional Topology by : Tomasz Mrowka
Download or read book Low Dimensional Topology written by Tomasz Mrowka and published by American Mathematical Soc.. This book was released on 2009-01-01 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-dimensional topology has long been a fertile area for the interaction of many different disciplines of mathematics, including differential geometry, hyperbolic geometry, combinatorics, representation theory, global analysis, classical mechanics, and theoretical physics. The Park City Mathematics Institute summer school in 2006 explored in depth the most exciting recent aspects of this interaction, aimed at a broad audience of both graduate students and researchers. The present volume is based on lectures presented at the summer school on low-dimensional topology. These notes give fresh, concise, and high-level introductions to these developments, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field of low-dimensional topology and to senior researchers wishing to keep up with current developments. The volume begins with notes based on a special lecture by John Milnor about the history of the topology of manifolds. It also contains notes from lectures by Cameron Gordon on the basics of three-manifold topology and surgery problems, Mikhail Khovanov on his homological invariants for knots, John Etnyre on contact geometry, Ron Fintushel and Ron Stern on constructions of exotic four-manifolds, David Gabai on the hyperbolic geometry and the ending lamination theorem, Zoltan Szabo on Heegaard Floer homology for knots and three manifolds, and John Morgan on Hamilton's and Perelman's work on Ricci flow and geometrization.
Book Synopsis The Wild World of 4-Manifolds by : Alexandru Scorpan
Download or read book The Wild World of 4-Manifolds written by Alexandru Scorpan and published by American Mathematical Soc.. This book was released on 2005-05-10 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. --MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. -- Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today. To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold--the intersection form--and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers. The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.
Book Synopsis Knots, Low-Dimensional Topology and Applications by : Colin C. Adams
Download or read book Knots, Low-Dimensional Topology and Applications written by Colin C. Adams and published by Springer. This book was released on 2019-06-26 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications – Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.
Book Synopsis Three-dimensional Geometry and Topology by : William P. Thurston
Download or read book Three-dimensional Geometry and Topology written by William P. Thurston and published by Princeton University Press. This book was released on 1997 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every mathematician should be acquainted with the basic facts about the geometry of surfaces, of two-dimensional manifolds. The theory of three-dimensional manifolds is much more difficult and still only partly understood, although there is ample evidence that the theory of three-dimensional manifolds is one of the most beautiful in the whole of mathematics. This excellent introductory work makes this mathematical wonderland remained rather inaccessible to non-specialists. The author is both a leading researcher, with a formidable geometric intuition, and a gifted expositor. His vivid descriptions of what it might be like to live in this or that three-dimensional manifold bring the subject to life. Like Poincaré, he appeals to intuition, but his enthusiasm is infectious and should make many converts for this kind of mathematics. There are good pictures, plenty of exercises and problems, and the reader will find a selection of topics which are not found in the standard repertoire. This book contains a great deal of interesting mathematics.
Book Synopsis Hyperspectral Image Analysis by : Saurabh Prasad
Download or read book Hyperspectral Image Analysis written by Saurabh Prasad and published by Springer Nature. This book was released on 2020-04-27 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Book Synopsis Python Data Science Handbook by : Jake VanderPlas
Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Book Synopsis Manifold Learning Theory and Applications by : Yunqian Ma
Download or read book Manifold Learning Theory and Applications written by Yunqian Ma and published by CRC Press. This book was released on 2011-12-20 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trained to extract actionable information from large volumes of high-dimensional data, engineers and scientists often have trouble isolating meaningful low-dimensional structures hidden in their high-dimensional observations. Manifold learning, a groundbreaking technique designed to tackle these issues of dimensionality reduction, finds widespread
Author :Clay Mathematics Institute. Summer School Publisher :American Mathematical Soc. ISBN 13 :9780821838457 Total Pages :318 pages Book Rating :4.8/5 (384 download)
Book Synopsis Floer Homology, Gauge Theory, and Low-Dimensional Topology by : Clay Mathematics Institute. Summer School
Download or read book Floer Homology, Gauge Theory, and Low-Dimensional Topology written by Clay Mathematics Institute. Summer School and published by American Mathematical Soc.. This book was released on 2006 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces. The use of gauge theory as a tool for studying topological properties of four-manifolds was pioneered by the fundamental work of Simon Donaldson in theearly 1980s, and was revolutionized by the introduction of the Seiberg-Witten equations in the mid-1990s. Since the birth of the subject, it has retained its close connection with symplectic topology. The analogy between these two fields of study was further underscored by Andreas Floer's constructionof an infinite-dimensional variant of Morse theory that applies in two a priori different contexts: either to define symplectic invariants for pairs of Lagrangian submanifolds of a symplectic manifold, or to define topological This volume is based on lecture courses and advanced seminars given at the 2004 Clay Mathematics Institute Summer School at the Alfred Renyi Institute of Mathematics in Budapest, Hungary. Several of the authors have added a considerable amount of additional material tothat presented at the school, and the resulting volume provides a state-of-the-art introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds. Information for our distributors: Titles in this seriesare copublished with the Clay Mathematics Institute (Cambridge, MA).
Book Synopsis Monopoles and Three-Manifolds by : Peter Kronheimer
Download or read book Monopoles and Three-Manifolds written by Peter Kronheimer and published by . This book was released on 2007-12-20 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2007 book provides a comprehensive treatment of Floer homology, based on the Seiberg-Witten equations. Suitable for beginning graduate students and researchers in the field, this book provides a full discussion of a central part of the study of the topology of manifolds.