Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Local Analytic Geometry
Download Local Analytic Geometry full books in PDF, epub, and Kindle. Read online Local Analytic Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Local Analytic Geometry by : Theo de Jong
Download or read book Local Analytic Geometry written by Theo de Jong and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Auf der Grundlage einer Einführung in die kommutative Algebra, algebraische Geometrie und komplexe Analysis werden zunächst Kurvensingularitäten untersucht. Daran schließen Ergebnisse an, die zum ersten Mal in einem Lehrbuch aufgenommen wurden, das Verhalten von Invarianten in Familien, Standardbasen für konvergente Potenzreihenringe, Approximationssätze, Grauerts Satz über die Existenz der versellen Deformation. Das Buch richtet sich an Studenten höherer Semester, Doktoranden und Dozenten. Es ist auf der Grundlage mehrerer Vorlesungen und Seminaren an den Universitäten in Kaiserslautern und Saarbrücken entstanden.
Book Synopsis Introduction to Complex Analytic Geometry by : Stanislaw Lojasiewicz
Download or read book Introduction to Complex Analytic Geometry written by Stanislaw Lojasiewicz and published by Birkhäuser. This book was released on 2013-03-09 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: facts. An elementary acquaintance with topology, algebra, and analysis (in cluding the notion of a manifold) is sufficient as far as the understanding of this book is concerned. All the necessary properties and theorems have been gathered in the preliminary chapters -either with proofs or with references to standard and elementary textbooks. The first chapter of the book is devoted to a study of the rings Oa of holomorphic functions. The notions of analytic sets and germs are introduced in the second chapter. Its aim is to present elementary properties of these objects, also in connection with ideals of the rings Oa. The case of principal germs (§5) and one-dimensional germs (Puiseux theorem, §6) are treated separately. The main step towards understanding of the local structure of analytic sets is Ruckert's descriptive lemma proved in Chapter III. Among its conse quences is the important Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom position into irreducible branches (§2). The role played by the ring 0 A of an analytic germ is shown (§4). Then, the Remmert-Stein theorem on re movable singularities is proved (§6). The last part of the chapter deals with analytically constructible sets (§7).
Book Synopsis Spectral Theory and Analytic Geometry over Non-Archimedean Fields by : Vladimir G. Berkovich
Download or read book Spectral Theory and Analytic Geometry over Non-Archimedean Fields written by Vladimir G. Berkovich and published by American Mathematical Soc.. This book was released on 2012-08-02 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and -adic analysis.
Book Synopsis Arithmetic and Geometry over Local Fields by : Bruno Anglès
Download or read book Arithmetic and Geometry over Local Fields written by Bruno Anglès and published by Springer Nature. This book was released on 2021-03-03 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume introduces some recent developments in Arithmetic Geometry over local fields. Its seven chapters are centered around two common themes: the study of Drinfeld modules and non-Archimedean analytic geometry. The notes grew out of lectures held during the research program "Arithmetic and geometry of local and global fields" which took place at the Vietnam Institute of Advanced Study in Mathematics (VIASM) from June to August 2018. The authors, leading experts in the field, have put great effort into making the text as self-contained as possible, introducing the basic tools of the subject. The numerous concrete examples and suggested research problems will enable graduate students and young researchers to quickly reach the frontiers of this fascinating branch of mathematics.
Book Synopsis Local Analytic Geometry by : Shreeram Shankar Abhyankar
Download or read book Local Analytic Geometry written by Shreeram Shankar Abhyankar and published by World Scientific. This book was released on 2001 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory.The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied.In the transition from punctual to local, i.e. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively.
Book Synopsis Analytic and Algebraic Geometry by : Jeffery D. McNeal
Download or read book Analytic and Algebraic Geometry written by Jeffery D. McNeal and published by American Mathematical Soc.. This book was released on 2010-01-01 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Analytic and algebraic geometers often study the same geometric structures but bring different methods to bear on them. While this dual approach has been spectacularly successful at solving problems, the language differences between algebra and analysis also represent a difficulty for students and researchers in geometry, particularly complex geometry. The PCMI program was designed to partially address this language gulf, by presenting some of the active developments in algebraic and analytic geometry in a form suitable for students on the 'other side' of the analysis-algebra language divide. One focal point of the summer school was multiplier ideals, a subject of wide current interest in both subjects. The present volume is based on a series of lectures at the PCMI summer school on analytic and algebraic geometry. The series is designed to give a high-level introduction to the advanced techniques behind some recent developments in algebraic and analytic geometry. The lectures contain many illustrative examples, detailed computations, and new perspectives on the topics presented, in order to enhance access of this material to non-specialists."--Publisher's description.
Book Synopsis Algebraic Geometry by : Robin Hartshorne
Download or read book Algebraic Geometry written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Book Synopsis Complex Analytic Geometry by : Gerd Fischer
Download or read book Complex Analytic Geometry written by Gerd Fischer and published by Springer. This book was released on 2006-11-14 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Geometry of Schemes by : David Eisenbud
Download or read book The Geometry of Schemes written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Book Synopsis Lectures on Formal and Rigid Geometry by : Siegfried Bosch
Download or read book Lectures on Formal and Rigid Geometry written by Siegfried Bosch and published by Springer. This book was released on 2014-08-22 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".
Book Synopsis Local Analytic Geometry by : Shreeram Shankar Abhyankar
Download or read book Local Analytic Geometry written by Shreeram Shankar Abhyankar and published by World Scientific. This book was released on 2001-01-15 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory.The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied.In the transition from punctual to local, i.e. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively.
Book Synopsis Analytic Geometry by : Douglas F. Riddle
Download or read book Analytic Geometry written by Douglas F. Riddle and published by Arden Shakespeare. This book was released on 1982 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This respected text makes extensive use of applications and features items such as historical vignettes to make the material useful and interesting. The text is written for the one-term analytic geometry course, often taught in sequence with college algebra, and is designed for students with a reasonably sound background in algebra, geometry, and trigonometry.
Book Synopsis Introduction to Singularities and Deformations by : Gert-Martin Greuel
Download or read book Introduction to Singularities and Deformations written by Gert-Martin Greuel and published by Springer Science & Business Media. This book was released on 2007-02-23 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.
Author :Thiruvalloor E. Venkata Balaji Publisher :Universitätsverlag Göttingen ISBN 13 :3941875329 Total Pages :241 pages Book Rating :4.9/5 (418 download)
Book Synopsis An Introduction to Families, Deformations and Moduli by : Thiruvalloor E. Venkata Balaji
Download or read book An Introduction to Families, Deformations and Moduli written by Thiruvalloor E. Venkata Balaji and published by Universitätsverlag Göttingen. This book was released on 2010 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Moduli Theory is one of those areas of Mathematics that has fascinated minds from classical to modern times. This has been so because it reveals beautiful Geometry naturally hidden in questions involving classification of geometric objects and because of the profound use of the methods of several areas of Mathematics like Algebra, Number Theory, Topology and Analysis to achieve this revelation. A study of Moduli Theory would therefore give senior undergraduate and graduate students an integrated view of Mathematics. The present book is a humble introduction to some aspects of Moduli Theory.
Book Synopsis Rigid Analytic Geometry and Its Applications by : Jean Fresnel
Download or read book Rigid Analytic Geometry and Its Applications written by Jean Fresnel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.
Book Synopsis Classical Algebraic Geometry by : Igor V. Dolgachev
Download or read book Classical Algebraic Geometry written by Igor V. Dolgachev and published by Cambridge University Press. This book was released on 2012-08-16 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
Book Synopsis Introduction to Singularities by : Shihoko Ishii
Download or read book Introduction to Singularities written by Shihoko Ishii and published by Springer. This book was released on 2014-11-19 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundaries of which correspond to singular varieties. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dim ensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied.