Linear Models And Regression With R: An Integrated Approach

Download Linear Models And Regression With R: An Integrated Approach PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811200424
Total Pages : 773 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Linear Models And Regression With R: An Integrated Approach by : Debasis Sengupta

Download or read book Linear Models And Regression With R: An Integrated Approach written by Debasis Sengupta and published by World Scientific. This book was released on 2019-07-30 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with the basic linear model where the design and covariance matrices are of full rank, this book demonstrates how the same statistical ideas can be used to explore the more general linear model with rank-deficient design and/or covariance matrices. The unified treatment presented here provides a clearer understanding of the general linear model from a statistical perspective, thus avoiding the complex matrix-algebraic arguments that are often used in the rank-deficient case. Elegant geometric arguments are used as needed.The book has a very broad coverage, from illustrative practical examples in Regression and Analysis of Variance alongside their implementation using R, to providing comprehensive theory of the general linear model with 181 worked-out examples, 227 exercises with solutions, 152 exercises without solutions (so that they may be used as assignments in a course), and 320 up-to-date references.This completely updated and new edition of Linear Models: An Integrated Approach includes the following features:

Linear Models

Download Linear Models PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789812564900
Total Pages : 652 pages
Book Rating : 4.5/5 (649 download)

DOWNLOAD NOW!


Book Synopsis Linear Models by : Debasis Sengupta

Download or read book Linear Models written by Debasis Sengupta and published by World Scientific. This book was released on 2003 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Models: An Integrated Approach aims to provide a clearand deep understanding of the general linear model using simplestatistical ideas. Elegant geometric arguments are also invoked asneeded and a review of vector spaces and matrices is provided to makethe treatment self-contained.

Learning Statistics with R

Download Learning Statistics with R PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 1326189727
Total Pages : 617 pages
Book Rating : 4.3/5 (261 download)

DOWNLOAD NOW!


Book Synopsis Learning Statistics with R by : Daniel Navarro

Download or read book Learning Statistics with R written by Daniel Navarro and published by Lulu.com. This book was released on 2013-01-13 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com

Linear Models in Statistics

Download Linear Models in Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470192607
Total Pages : 690 pages
Book Rating : 4.4/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Linear Models in Statistics by : Alvin C. Rencher

Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Linear Models and Regression with R

Download Linear Models and Regression with R PDF Online Free

Author :
Publisher :
ISBN 13 : 9789811229282
Total Pages : 774 pages
Book Rating : 4.2/5 (292 download)

DOWNLOAD NOW!


Book Synopsis Linear Models and Regression with R by : Debasis Sengupta

Download or read book Linear Models and Regression with R written by Debasis Sengupta and published by . This book was released on 2020-08-28 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Data Analysis

Download Data Analysis PDF Online Free

Author :
Publisher :
ISBN 13 : 9781138819825
Total Pages : 0 pages
Book Rating : 4.8/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis by : Charles M. Judd

Download or read book Data Analysis written by Charles M. Judd and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noted for its model-comparison approach and unified framework based on the general linear model (GLM), this classic text provides readers with a greater understanding of a variety of statistical procedures including analysis of variance (ANOVA) and regression.

Linear Regression Analysis

Download Linear Regression Analysis PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812834109
Total Pages : 349 pages
Book Rating : 4.8/5 (128 download)

DOWNLOAD NOW!


Book Synopsis Linear Regression Analysis by : Xin Yan

Download or read book Linear Regression Analysis written by Xin Yan and published by World Scientific. This book was released on 2009 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.

Modern Statistics with R

Download Modern Statistics with R PDF Online Free

Author :
Publisher :
ISBN 13 : 9781032497457
Total Pages : 0 pages
Book Rating : 4.4/5 (974 download)

DOWNLOAD NOW!


Book Synopsis Modern Statistics with R by : Måns Thulin

Download or read book Modern Statistics with R written by Måns Thulin and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Spatial Analysis Methods and Practice

Download Spatial Analysis Methods and Practice PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108498981
Total Pages : 535 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Spatial Analysis Methods and Practice by : George Grekousis

Download or read book Spatial Analysis Methods and Practice written by George Grekousis and published by Cambridge University Press. This book was released on 2020-06-11 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory overview of spatial analysis and statistics through GIS, including worked examples and critical analysis of results.

Generalized Additive Models

Download Generalized Additive Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1584884746
Total Pages : 412 pages
Book Rating : 4.5/5 (848 download)

DOWNLOAD NOW!


Book Synopsis Generalized Additive Models by : Simon Wood

Download or read book Generalized Additive Models written by Simon Wood and published by CRC Press. This book was released on 2006-02-27 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also emphasizes recent penalized regression spline approaches to GAMs and the mixed model extensions of these models. Generalized Additive Models: An Introduction with R imparts a thorough understanding of the theory and practical applications of GAMs and related advanced models, enabling informed use of these very flexible tools. The author bases his approach on a framework of penalized regression splines, and builds a well-grounded foundation through motivating chapters on linear and generalized linear models. While firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of the freely available R software helps explain the theory and illustrates the practicalities of linear, generalized linear, and generalized additive models, as well as their mixed effect extensions. The treatment is rich with practical examples, and it includes an entire chapter on the analysis of real data sets using R and the author's add-on package mgcv. Each chapter includes exercises, for which complete solutions are provided in an appendix. Concise, comprehensive, and essentially self-contained, Generalized Additive Models: An Introduction with R prepares readers with the practical skills and the theoretical background needed to use and understand GAMs and to move on to other GAM-related methods and models, such as SS-ANOVA, P-splines, backfitting and Bayesian approaches to smoothing and additive modelling.

Fitting Models to Biological Data Using Linear and Nonlinear Regression

Download Fitting Models to Biological Data Using Linear and Nonlinear Regression PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 9780198038344
Total Pages : 352 pages
Book Rating : 4.0/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Fitting Models to Biological Data Using Linear and Nonlinear Regression by : Harvey Motulsky

Download or read book Fitting Models to Biological Data Using Linear and Nonlinear Regression written by Harvey Motulsky and published by Oxford University Press. This book was released on 2004-05-27 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.

Regression and ANOVA

Download Regression and ANOVA PDF Online Free

Author :
Publisher : SAS Press
ISBN 13 : 9781580258906
Total Pages : 0 pages
Book Rating : 4.2/5 (589 download)

DOWNLOAD NOW!


Book Synopsis Regression and ANOVA by : Keith E. Muller

Download or read book Regression and ANOVA written by Keith E. Muller and published by SAS Press. This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Muller and Fetterman (U. of N. Carolina, Chapel Hill) developed this text for use in "Intermediate Linear Models," a graduate level biostatistics class at UNC, covering basic theory, multiple regression, model building and evaluation, ANOVA, and universal tools. The text uses sets of real data, and contains almost no proofs. Ideal prerequisites for use include a matrix algebra class, an undergraduate introduction to mathematical statistics, basic programming skills in the statistical package used in the course (data input, data transformation, and analysis), and basic skills in linear models. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).

Linear Models with R

Download Linear Models with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439887349
Total Pages : 284 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Linear Models with R by : Julian J. Faraway

Download or read book Linear Models with R written by Julian J. Faraway and published by CRC Press. This book was released on 2016-04-19 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models

The R Book

Download The R Book PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470515068
Total Pages : 953 pages
Book Rating : 4.5/5 (15 download)

DOWNLOAD NOW!


Book Synopsis The R Book by : Michael J. Crawley

Download or read book The R Book written by Michael J. Crawley and published by John Wiley & Sons. This book was released on 2007-06-13 with total page 953 pages. Available in PDF, EPUB and Kindle. Book excerpt: The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.

Applied Econometrics with R

Download Applied Econometrics with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387773185
Total Pages : 229 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Applied Econometrics with R by : Christian Kleiber

Download or read book Applied Econometrics with R written by Christian Kleiber and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.

Linear Models: An Integrated Approach

Download Linear Models: An Integrated Approach PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814491268
Total Pages : 646 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Linear Models: An Integrated Approach by : S Rao Jammalamadaka

Download or read book Linear Models: An Integrated Approach written by S Rao Jammalamadaka and published by World Scientific. This book was released on 2003-03-03 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Models: An Integrated Approach aims to provide a clear and deep understanding of the general linear model using simple statistical ideas. Elegant geometric arguments are also invoked as needed and a review of vector spaces and matrices is provided to make the treatment self-contained. Complex, matrix-algebraic methods, such as those used in the rank-deficient case, are replaced by statistical proofs that are more transparent and that show the parallels with the simple linear model.This book has the following special features:

Mixed Effects Models for Complex Data

Download Mixed Effects Models for Complex Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420074086
Total Pages : 431 pages
Book Rating : 4.0/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu

Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.