Introduction to Applied Linear Algebra

Download Introduction to Applied Linear Algebra PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316518965
Total Pages : 477 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Applied Linear Algebra by : Stephen Boyd

Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Linear Algebra Coding with Python

Download Linear Algebra Coding with Python PDF Online Free

Author :
Publisher : Hyun-Seok Son
ISBN 13 :
Total Pages : 316 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra Coding with Python by : Hyun-Seok Son

Download or read book Linear Algebra Coding with Python written by Hyun-Seok Son and published by Hyun-Seok Son. This book was released on 2020-08-11 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python is one of the most popular languages for data analysis and prediction. What's more, tensorflow and torch, useful tools of recent deep learning, are fully implemented by Python. The basic form of data in these languages is an array, created by Python's important package numpy. In particular, arrays are the basis of data science because they have structures of vectors and matrices that give the meaning of direction and magnitude to each value in the data set. The matrix structure allows transformation to a simple form without losing the basic characteristics of a vast data set. These transformations are useful for efficient processing of data and for finding implicit characteristics. Linear Algebra, a field that provides a basic theory of vectors and matrices, provides many algorithms to increase the accuracy and speed of computation for analyzing data and to discover the characteristics of a data set. These algorithms are very useful for understanding the computing process of probability, statistics and the learning machine. This book introduces many basics of linear algebra using Python packages numpy, sympy, and so on. Chapters 1 and 2 introduce the creation and characteristics of vectors and matrices. Chapter 3 describes the linear system(linear combination) through the process finding the solution in a system of simultaneous equations. Vector space, a concept introduced in Chapter 4, is used to infer the collective characteristics and relationships of each vector of a linear system. Chapter 5 introduces the coordinate system to represent the linear system geometrically. Chapter 6 introduces the process of transforming while maintaining basic characteristics such as vectors and matrices. Finally, Chapter 7 describes several ways to decompose the original form into a simple form. In this process, we use a variety of Python functions.

Coding the Matrix

Download Coding the Matrix PDF Online Free

Author :
Publisher :
ISBN 13 : 9780615856735
Total Pages : 530 pages
Book Rating : 4.8/5 (567 download)

DOWNLOAD NOW!


Book Synopsis Coding the Matrix by : Philip N. Klein

Download or read book Coding the Matrix written by Philip N. Klein and published by . This book was released on 2013-07 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program" A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon.

Linear Algebra, Signal Processing, and Wavelets - A Unified Approach

Download Linear Algebra, Signal Processing, and Wavelets - A Unified Approach PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030018121
Total Pages : 381 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra, Signal Processing, and Wavelets - A Unified Approach by : Øyvind Ryan

Download or read book Linear Algebra, Signal Processing, and Wavelets - A Unified Approach written by Øyvind Ryan and published by Springer. This book was released on 2019-03-05 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the MATLAB code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.

Linear Algebra: Theory, Intuition, Code

Download Linear Algebra: Theory, Intuition, Code PDF Online Free

Author :
Publisher :
ISBN 13 : 9789083136608
Total Pages : 584 pages
Book Rating : 4.1/5 (366 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra: Theory, Intuition, Code by : Mike X. Cohen

Download or read book Linear Algebra: Theory, Intuition, Code written by Mike X. Cohen and published by . This book was released on 2021-02 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra is perhaps the most important branch of mathematics for computational sciences, including machine learning, AI, data science, statistics, simulations, computer graphics, multivariate analyses, matrix decompositions, signal processing, and so on.The way linear algebra is presented in traditional textbooks is different from how professionals use linear algebra in computers to solve real-world applications in machine learning, data science, statistics, and signal processing. For example, the "determinant" of a matrix is important for linear algebra theory, but should you actually use the determinant in practical applications? The answer may surprise you!If you are interested in learning the mathematical concepts linear algebra and matrix analysis, but also want to apply those concepts to data analyses on computers (e.g., statistics or signal processing), then this book is for you. You'll see all the math concepts implemented in MATLAB and in Python.Unique aspects of this book: - Clear and comprehensible explanations of concepts and theories in linear algebra. - Several distinct explanations of the same ideas, which is a proven technique for learning. - Visualization using graphs, which strengthens the geometric intuition of linear algebra. - Implementations in MATLAB and Python. Com'on, in the real world, you never solve math problems by hand! You need to know how to implement math in software! - Beginner to intermediate topics, including vectors, matrix multiplications, least-squares projections, eigendecomposition, and singular-value decomposition. - Strong focus on modern applications-oriented aspects of linear algebra and matrix analysis. - Intuitive visual explanations of diagonalization, eigenvalues and eigenvectors, and singular value decomposition. - Codes (MATLAB and Python) are provided to help you understand and apply linear algebra concepts on computers. - A combination of hand-solved exercises and more advanced code challenges. Math is not a spectator sport!

Basics of Linear Algebra for Machine Learning

Download Basics of Linear Algebra for Machine Learning PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 211 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Basics of Linear Algebra for Machine Learning by : Jason Brownlee

Download or read book Basics of Linear Algebra for Machine Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-01-24 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this laser-focused Ebook, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more.

Algebra and Geometry with Python

Download Algebra and Geometry with Python PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030615413
Total Pages : 429 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Algebra and Geometry with Python by : Sergei Kurgalin

Download or read book Algebra and Geometry with Python written by Sergei Kurgalin and published by Springer Nature. This book was released on 2021-01-18 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches algebra and geometry. The authors dedicate chapters to the key issues of matrices, linear equations, matrix algorithms, vector spaces, lines, planes, second-order curves, and elliptic curves. The text is supported throughout with problems, and the authors have included source code in Python in the book. The book is suitable for advanced undergraduate and graduate students in computer science.

Lecture Notes for Linear Algebra

Download Lecture Notes for Linear Algebra PDF Online Free

Author :
Publisher :
ISBN 13 : 1733146644
Total Pages : 186 pages
Book Rating : 4.7/5 (331 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes for Linear Algebra by : Gilbert Strang

Download or read book Lecture Notes for Linear Algebra written by Gilbert Strang and published by . This book was released on with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lecture Notes for Linear Algebra provides instructors with a detailed lecture-by-lecture outline for a basic linear algebra course. The ideas and examples presented in this e-book are based on Strang’s video lectures for Mathematics 18.06 and 18.065, available on MIT’s OpenCourseWare (ocw.mit.edu) and YouTube (youtube.com/mitocw). Readers will quickly gain a picture of the whole course—the structure of the subject, the key topics in a natural order, and the connecting ideas that make linear algebra so beautiful.

Introduction to Linear Algebra

Download Introduction to Linear Algebra PDF Online Free

Author :
Publisher : Wellesley-Cambridge Press
ISBN 13 : 9780980232776
Total Pages : 0 pages
Book Rating : 4.2/5 (327 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Linear Algebra by : Gilbert Strang

Download or read book Introduction to Linear Algebra written by Gilbert Strang and published by Wellesley-Cambridge Press. This book was released on 2016-08-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra is something all mathematics undergraduates and many other students, in subjects ranging from engineering to economics, have to learn. The fifth edition of this hugely successful textbook retains all the qualities of earlier editions, while at the same time seeing numerous minor improvements and major additions. The latter include: • A new chapter on singular values and singular vectors, including ways to analyze a matrix of data • A revised chapter on computing in linear algebra, with professional-level algorithms and code that can be downloaded for a variety of languages • A new section on linear algebra and cryptography • A new chapter on linear algebra in probability and statistics. A dedicated and active website also offers solutions to exercises as well as new exercises from many different sources (including practice problems, exams, and development of textbook examples), plus codes in MATLAB®, Julia, and Python.

Python Programming and Numerical Methods

Download Python Programming and Numerical Methods PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128195509
Total Pages : 482 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Python Programming and Numerical Methods by : Qingkai Kong

Download or read book Python Programming and Numerical Methods written by Qingkai Kong and published by Academic Press. This book was released on 2020-11-27 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online

Linear Algebra and Its Applications with R

Download Linear Algebra and Its Applications with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000400247
Total Pages : 424 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra and Its Applications with R by : Ruriko Yoshida

Download or read book Linear Algebra and Its Applications with R written by Ruriko Yoshida and published by CRC Press. This book was released on 2021-06-27 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book developed from the need to teach a linear algebra course to students focused on data science and bioinformatics programs. These students tend not to realize the importance of linear algebra in applied sciences, since traditional linear algebra courses tend to cover mathematical contexts but not the computational aspect of linear algebra or its applications to data science and bioinformatics. The author presents the topics in a traditional course, yet offers lectures as well as lab exercises on simulated and empirical data sets. This textbook provides students a theoretical basis which can then be applied to the practical R and Python problems, providing the tools needed for real-world applications. Each section starts with working examples to demonstrate how tools from linear algebra can help solve problems in applied sciences. These exercises start from easy computations, such as computing determinants of matrices, to practical applications on simulated and empirical data sets with R so that students learn how to get started with R, along with computational examples in each section, and then students learn how to apply what they've learned to problems in applied sciences. This book is designed from first principles to demonstrate the importance of linear algebra through working computational examples with R and Python, including tutorials on how to install R in the Appendix. If a student has never seen R, they can get started without any additional help. Since Python is one of the most popular languages in data science, optimization, and computer science, code supplements are available for students who feel more comfortable with Python. R is used primarily for computational examples to develop students’ practical computational skills. About the Author: Dr. Ruriko Yoshida is an Associate Professor of Operations Research at the Naval Postgraduate School. She received her PhD in Mathematics from the University of California, Davis. Her research topics cover a wide variety of areas: applications of algebraic combinatorics to statistical problems such as statistical learning on non-Euclidean spaces, sensor networks, phylogenetics, and phylogenomics. She teaches courses in statistics, stochastic models, probability, and data science.

Machine Learning with Python Cookbook

Download Machine Learning with Python Cookbook PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491989335
Total Pages : 285 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with Python Cookbook by : Chris Albon

Download or read book Machine Learning with Python Cookbook written by Chris Albon and published by "O'Reilly Media, Inc.". This book was released on 2018-03-09 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models

Statistical Learning with Math and Python

Download Statistical Learning with Math and Python PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981157877X
Total Pages : 261 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Statistical Learning with Math and Python by : Joe Suzuki

Download or read book Statistical Learning with Math and Python written by Joe Suzuki and published by Springer Nature. This book was released on 2021-08-03 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of machine learning and data science by considering math problems and building Python programs. As the preliminary part, Chapter 1 provides a concise introduction to linear algebra, which will help novices read further to the following main chapters. Those succeeding chapters present essential topics in statistical learning: linear regression, classification, resampling, information criteria, regularization, nonlinear regression, decision trees, support vector machines, and unsupervised learning. Each chapter mathematically formulates and solves machine learning problems and builds the programs. The body of a chapter is accompanied by proofs and programs in an appendix, with exercises at the end of the chapter. Because the book is carefully organized to provide the solutions to the exercises in each chapter, readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 12 lectures. Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning.

Linear Models with Python

Download Linear Models with Python PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351053396
Total Pages : 315 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Linear Models with Python by : Julian J. Faraway

Download or read book Linear Models with Python written by Julian J. Faraway and published by CRC Press. This book was released on 2021-01-08 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Linear Models with R: This book is a must-have tool for anyone interested in understanding and applying linear models. The logical ordering of the chapters is well thought out and portrays Faraway’s wealth of experience in teaching and using linear models. ... It lays down the material in a logical and intricate manner and makes linear modeling appealing to researchers from virtually all fields of study. -Biometrical Journal Throughout, it gives plenty of insight ... with comments that even the seasoned practitioner will appreciate. Interspersed with R code and the output that it produces one can find many little gems of what I think is sound statistical advice, well epitomized with the examples chosen...I read it with delight and think that the same will be true with anyone who is engaged in the use or teaching of linear models. -Journal of the Royal Statistical Society Like its widely praised, best-selling companion version, Linear Models with R, this book replaces R with Python to seamlessly give a coherent exposition of the practice of linear modeling. Linear Models with Python offers up-to-date insight on essential data analysis topics, from estimation, inference and prediction to missing data, factorial models and block designs. Numerous examples illustrate how to apply the different methods using Python. Features: Python is a powerful, open source programming language increasingly being used in data science, machine learning and computer science. Python and R are similar, but R was designed for statistics, while Python is multi-talented. This version replaces R with Python to make it accessible to a greater number of users outside of statistics, including those from Machine Learning. A reader coming to this book from an ML background will learn new statistical perspectives on learning from data. Topics include Model Selection, Shrinkage, Experiments with Blocks and Missing Data. Includes an Appendix on Python for beginners. Linear Models with Python explains how to use linear models in physical science, engineering, social science and business applications. It is ideal as a textbook for linear models or linear regression courses.

Learning SciPy for Numerical and Scientific Computing

Download Learning SciPy for Numerical and Scientific Computing PDF Online Free

Author :
Publisher : Packt Publishing
ISBN 13 : 9781782161622
Total Pages : 0 pages
Book Rating : 4.1/5 (616 download)

DOWNLOAD NOW!


Book Synopsis Learning SciPy for Numerical and Scientific Computing by : Francisco J. Blanco-Silva

Download or read book Learning SciPy for Numerical and Scientific Computing written by Francisco J. Blanco-Silva and published by Packt Publishing. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step practical tutorial with plenty of examples on research-based problems from various areas of science, that prove how simple, yet effective, it is to provide solutions based on SciPy.This book is targeted at anyone with basic knowledge of Python, a somewhat advanced command of mathematics/physics, and an interest in engineering or scientific applications---this is broadly what we refer to as scientific computing.This book will be of critical importance to programmers and scientists who have basic Python knowledge and would like to be able to do scientific and numerical computations with SciPy.

Mathematics for Machine Learning

Download Mathematics for Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108569323
Total Pages : 392 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Linear Algebra and Learning from Data

Download Linear Algebra and Learning from Data PDF Online Free

Author :
Publisher : Wellesley-Cambridge Press
ISBN 13 : 9780692196380
Total Pages : 0 pages
Book Rating : 4.1/5 (963 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra and Learning from Data by : Gilbert Strang

Download or read book Linear Algebra and Learning from Data written by Gilbert Strang and published by Wellesley-Cambridge Press. This book was released on 2019-01-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.