Characteristic Classes

Download Characteristic Classes PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691081229
Total Pages : 342 pages
Book Rating : 4.0/5 (812 download)

DOWNLOAD NOW!


Book Synopsis Characteristic Classes by : John Willard Milnor

Download or read book Characteristic Classes written by John Willard Milnor and published by Princeton University Press. This book was released on 1974 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Connections, Curvature, and Cohomology: Lie groups, principal bundles, and characteristic classes

Download Connections, Curvature, and Cohomology: Lie groups, principal bundles, and characteristic classes PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 572 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Connections, Curvature, and Cohomology: Lie groups, principal bundles, and characteristic classes by : Werner Hildbert Greub

Download or read book Connections, Curvature, and Cohomology: Lie groups, principal bundles, and characteristic classes written by Werner Hildbert Greub and published by . This book was released on 1973 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 2.

Applications of Lie Groups to Differential Equations

Download Applications of Lie Groups to Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468402749
Total Pages : 524 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Applications of Lie Groups to Differential Equations by : Peter J. Olver

Download or read book Applications of Lie Groups to Differential Equations written by Peter J. Olver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319550845
Total Pages : 358 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Loring W. Tu

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Natural Operations in Differential Geometry

Download Natural Operations in Differential Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662029502
Total Pages : 440 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Natural Operations in Differential Geometry by : Ivan Kolar

Download or read book Natural Operations in Differential Geometry written by Ivan Kolar and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.

Connections, Curvature, and Cohomology V1

Download Connections, Curvature, and Cohomology V1 PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 008087360X
Total Pages : 467 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Connections, Curvature, and Cohomology V1 by :

Download or read book Connections, Curvature, and Cohomology V1 written by and published by Academic Press. This book was released on 1972-07-31 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Connections, Curvature, and Cohomology V1

Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics

Download Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521597005
Total Pages : 480 pages
Book Rating : 4.5/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics by : Josi A. de Azcárraga

Download or read book Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics written by Josi A. de Azcárraga and published by Cambridge University Press. This book was released on 1998-08-06 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to the cohomology theory of Lie groups and some of its applications in physics.

Mathematics For Physics: An Illustrated Handbook

Download Mathematics For Physics: An Illustrated Handbook PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813233931
Total Pages : 301 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Mathematics For Physics: An Illustrated Handbook by : Adam Marsh

Download or read book Mathematics For Physics: An Illustrated Handbook written by Adam Marsh and published by World Scientific. This book was released on 2017-11-27 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book complements traditional textbooks by providing a visual yet rigorous survey of the mathematics used in theoretical physics beyond that typically covered in undergraduate math and physics courses. The exposition is pedagogical but compact, and the emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints. Certain topics which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations, are avoided. The primary physical models targeted are general relativity, spinors, and gauge theories, with notable chapters on Riemannian geometry, Clifford algebras, and fiber bundles.

An Introduction to Lie Groups and Lie Algebras

Download An Introduction to Lie Groups and Lie Algebras PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521889693
Total Pages : 237 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov

Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Geometry of Characteristic Classes

Download Geometry of Characteristic Classes PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821821393
Total Pages : 202 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Characteristic Classes by : Shigeyuki Morita

Download or read book Geometry of Characteristic Classes written by Shigeyuki Morita and published by American Mathematical Soc.. This book was released on 2001 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Characteristic classes are central to the modern study of the topology and geometry of manifolds. They were first introduced in topology, where, for instance, they could be used to define obstructions to the existence of certain fiber bundles. Characteristic classes were later defined (via the Chern-Weil theory) using connections on vector bundles, thus revealing their geometric side. In the late 1960s new theories arose that described still finer structures. Examples of the so-called secondary characteristic classes came from Chern-Simons invariants, Gelfand-Fuks cohomology, and the characteristic classes of flat bundles. The new techniques are particularly useful for the study of fiber bundles whose structure groups are not finite dimensional. The theory of characteristic classes of surface bundles is perhaps the most developed. Here the special geometry of surfaces allows one to connect this theory to the theory of moduli space of Riemann surfaces, i.e., Teichmüller theory. In this book Morita presents an introduction to the modern theories of characteristic classes.

Spectral Theory of Random Matrices

Download Spectral Theory of Random Matrices PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080873618
Total Pages : 568 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory of Random Matrices by : Vyacheslav L. Girko

Download or read book Spectral Theory of Random Matrices written by Vyacheslav L. Girko and published by Academic Press. This book was released on 2016-08-23 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral Theory of Random Matrices

Lectures on Lie Groups

Download Lectures on Lie Groups PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 0226005305
Total Pages : 192 pages
Book Rating : 4.2/5 (26 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Lie Groups by : J. F. Adams

Download or read book Lectures on Lie Groups written by J. F. Adams and published by University of Chicago Press. This book was released on 1982 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: "[Lectures in Lie Groups] fulfills its aim admirably and should be a useful reference for any mathematician who would like to learn the basic results for compact Lie groups. . . . The book is a well written basic text [and Adams] has done a service to the mathematical community."—Irving Kaplansky

The Geometry of Jet Bundles

Download The Geometry of Jet Bundles PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521369487
Total Pages : 307 pages
Book Rating : 4.5/5 (213 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Jet Bundles by : D. J. Saunders

Download or read book The Geometry of Jet Bundles written by D. J. Saunders and published by Cambridge University Press. This book was released on 1989-03-09 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to , particularly those associated with the calculus of variations, in a modern geometric way.

Differential Geometric Structures

Download Differential Geometric Structures PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486151913
Total Pages : 356 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometric Structures by : Walter A. Poor

Download or read book Differential Geometric Structures written by Walter A. Poor and published by Courier Corporation. This book was released on 2015-04-27 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.

Lie Groups: Structure, Actions, and Representations

Download Lie Groups: Structure, Actions, and Representations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461471931
Total Pages : 422 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups: Structure, Actions, and Representations by : Alan Huckleberry

Download or read book Lie Groups: Structure, Actions, and Representations written by Alan Huckleberry and published by Springer Science & Business Media. This book was released on 2013-08-04 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie Groups: Structures, Actions, and Representations, In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday consists of invited expository and research articles on new developments arising from Wolf's profound contributions to mathematics. Due to Professor Wolf’s broad interests, outstanding mathematicians and scholars in a wide spectrum of mathematical fields contributed to the volume. Algebraic, geometric, and analytic methods are employed. More precisely, finite groups and classical finite dimensional, as well as infinite-dimensional Lie groups, and algebras play a role. Actions on classical symmetric spaces, and on abstract homogeneous and representation spaces are discussed. Contributions in the area of representation theory involve numerous viewpoints, including that of algebraic groups and various analytic aspects of harmonic analysis. Contributors D. Akhiezer T. Oshima A. Andrada I. Pacharoni M. L. Barberis F. Ricci L. Barchini S. Rosenberg I. Dotti N. Shimeno M. Eastwood J. Tirao V. Fischer S. Treneer T. Kobayashi C.T.C. Wall A. Korányi D. Wallace B. Kostant K. Wiboonton P. Kostelec F. Xu K.-H. Neeb O. Yakimova G. Olafsson R. Zierau B. Ørsted

Introduction to Compact Transformation Groups

Download Introduction to Compact Transformation Groups PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080873596
Total Pages : 477 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Compact Transformation Groups by :

Download or read book Introduction to Compact Transformation Groups written by and published by Academic Press. This book was released on 1972-09-29 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Compact Transformation Groups

Lecture Notes in Algebraic Topology

Download Lecture Notes in Algebraic Topology PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470473682
Total Pages : 385 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes in Algebraic Topology by : James F. Davis

Download or read book Lecture Notes in Algebraic Topology written by James F. Davis and published by American Mathematical Society. This book was released on 2023-05-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.