Differential Geometry Of Curves And Surfaces

Download Differential Geometry Of Curves And Surfaces PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9814740268
Total Pages : 327 pages
Book Rating : 4.8/5 (147 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry Of Curves And Surfaces by : Masaaki Umehara

Download or read book Differential Geometry Of Curves And Surfaces written by Masaaki Umehara and published by World Scientific Publishing Company. This book was released on 2017-05-12 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'In a class populated by students who already have some exposure to the concept of a manifold, the presence of chapter 3 in this text may make for an unusual and interesting course. The primary function of this book will be as a text for a more conventional course in the classical theory of curves and surfaces.'MAA ReviewsThis engrossing volume on curve and surface theories is the result of many years of experience the authors have had with teaching the most essential aspects of this subject. The first half of the text is suitable for a university-level course, without the need for referencing other texts, as it is completely self-contained. More advanced material in the second half of the book, including appendices, also serves more experienced students well.Furthermore, this text is also suitable for a seminar for graduate students, and for self-study. It is written in a robust style that gives the student the opportunity to continue his study at a higher level beyond what a course would usually offer. Further material is included, for example, closed curves, enveloping curves, curves of constant width, the fundamental theorem of surface theory, constant mean curvature surfaces, and existence of curvature line coordinates.Surface theory from the viewpoint of manifolds theory is explained, and encompasses higher level material that is useful for the more advanced student. This includes, but is not limited to, indices of umbilics, properties of cycloids, existence of conformal coordinates, and characterizing conditions for singularities.In summary, this textbook succeeds in elucidating detailed explanations of fundamental material, where the most essential basic notions stand out clearly, but does not shy away from the more advanced topics needed for research in this field. It provides a large collection of mathematically rich supporting topics. Thus, it is an ideal first textbook in this field.

Curves and Surfaces

Download Curves and Surfaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821847635
Total Pages : 395 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Curves and Surfaces by : Sebastián Montiel

Download or read book Curves and Surfaces written by Sebastián Montiel and published by American Mathematical Soc.. This book was released on 2009 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a focused point of view on the differential geometry of curves and surfaces. This monograph treats the Gauss - Bonnet theorem and discusses the Euler characteristic. It also covers Alexandrov's theorem on embedded compact surfaces in R3 with constant mean curvature.

Lectures on Classical Differential Geometry

Download Lectures on Classical Differential Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486138186
Total Pages : 254 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Classical Differential Geometry by : Dirk J. Struik

Download or read book Lectures on Classical Differential Geometry written by Dirk J. Struik and published by Courier Corporation. This book was released on 2012-04-26 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.

Curves and Surfaces

Download Curves and Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 8847019419
Total Pages : 407 pages
Book Rating : 4.8/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Curves and Surfaces by : M. Abate

Download or read book Curves and Surfaces written by M. Abate and published by Springer Science & Business Media. This book was released on 2012-06-11 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3.

Lectures on the Differential Geometry of Curves and Surfaces

Download Lectures on the Differential Geometry of Curves and Surfaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 622 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Lectures on the Differential Geometry of Curves and Surfaces by : Andrew Russell Forsyth

Download or read book Lectures on the Differential Geometry of Curves and Surfaces written by Andrew Russell Forsyth and published by . This book was released on 1912 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A First Course in Differential Geometry

Download A First Course in Differential Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108424937
Total Pages : 275 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Differential Geometry by : Lyndon Woodward

Download or read book A First Course in Differential Geometry written by Lyndon Woodward and published by Cambridge University Press. This book was released on 2019 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: With detailed explanations and numerous examples, this textbook covers the differential geometry of surfaces in Euclidean space.

Elementary Differential Geometry

Download Elementary Differential Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447136969
Total Pages : 336 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Elementary Differential Geometry by : A.N. Pressley

Download or read book Elementary Differential Geometry written by A.N. Pressley and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pressley assumes the reader knows the main results of multivariate calculus and concentrates on the theory of the study of surfaces. Used for courses on surface geometry, it includes intersting and in-depth examples and goes into the subject in great detail and vigour. The book will cover three-dimensional Euclidean space only, and takes the whole book to cover the material and treat it as a subject in its own right.

Introduction to Smooth Manifolds

Download Introduction to Smooth Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387217525
Total Pages : 646 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Smooth Manifolds by : John M. Lee

Download or read book Introduction to Smooth Manifolds written by John M. Lee and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

Introduction to Differential Geometry

Download Introduction to Differential Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3662643405
Total Pages : 426 pages
Book Rating : 4.6/5 (626 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Geometry by : Joel W. Robbin

Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Differential Geometry of Manifolds

Download Differential Geometry of Manifolds PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429602308
Total Pages : 466 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Manifolds by : Stephen Lovett

Download or read book Differential Geometry of Manifolds written by Stephen Lovett and published by CRC Press. This book was released on 2019-12-16 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Geometry of Manifolds, Second Edition presents the extension of differential geometry from curves and surfaces to manifolds in general. The book provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. It introduces manifolds in a both streamlined and mathematically rigorous way while keeping a view toward applications, particularly in physics. The author takes a practical approach, containing extensive exercises and focusing on applications, including the Hamiltonian formulations of mechanics, electromagnetism, string theory. The Second Edition of this successful textbook offers several notable points of revision. New to the Second Edition: New problems have been added and the level of challenge has been changed to the exercises Each section corresponds to a 60-minute lecture period, making it more user-friendly for lecturers Includes new sections which provide more comprehensive coverage of topics Features a new chapter on Multilinear Algebra

Topological, Differential and Conformal Geometry of Surfaces

Download Topological, Differential and Conformal Geometry of Surfaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030890325
Total Pages : 282 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Topological, Differential and Conformal Geometry of Surfaces by : Norbert A'Campo

Download or read book Topological, Differential and Conformal Geometry of Surfaces written by Norbert A'Campo and published by Springer Nature. This book was released on 2021-10-27 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821839888
Total Pages : 394 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Wolfgang Kühnel

Download or read book Differential Geometry written by Wolfgang Kühnel and published by American Mathematical Soc.. This book was released on 2006 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.

Elementary Differential Geometry

Download Elementary Differential Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521896711
Total Pages : 335 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Elementary Differential Geometry by : Christian Bär

Download or read book Elementary Differential Geometry written by Christian Bär and published by Cambridge University Press. This book was released on 2010-05-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-read introduction takes the reader from elementary problems through to current research. Ideal for courses and self-study.

A Treatise on the Differential Geometry of Curves and Surfaces

Download A Treatise on the Differential Geometry of Curves and Surfaces PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 9780486438207
Total Pages : 496 pages
Book Rating : 4.4/5 (382 download)

DOWNLOAD NOW!


Book Synopsis A Treatise on the Differential Geometry of Curves and Surfaces by : Luther Pfahler Eisenhart

Download or read book A Treatise on the Differential Geometry of Curves and Surfaces written by Luther Pfahler Eisenhart and published by Courier Corporation. This book was released on 2004-01-01 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Created especially for graduate students by a leading writer on mathematics, this introduction to the geometry of curves and surfaces concentrates on problems that students will find most helpful.

Differential Geometry of Curves and Surfaces

Download Differential Geometry of Curves and Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817644024
Total Pages : 215 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Curves and Surfaces by : Victor Andreevich Toponogov

Download or read book Differential Geometry of Curves and Surfaces written by Victor Andreevich Toponogov and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels

A New Approach to Differential Geometry using Clifford's Geometric Algebra

Download A New Approach to Differential Geometry using Clifford's Geometric Algebra PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 081768283X
Total Pages : 472 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis A New Approach to Differential Geometry using Clifford's Geometric Algebra by : John Snygg

Download or read book A New Approach to Differential Geometry using Clifford's Geometric Algebra written by John Snygg and published by Springer Science & Business Media. This book was released on 2011-12-09 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.

The Cumulative Book Index

Download The Cumulative Book Index PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 864 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Cumulative Book Index by :

Download or read book The Cumulative Book Index written by and published by . This book was released on 1913 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: