Constrained Control and Estimation

Download Constrained Control and Estimation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 184628063X
Total Pages : 415 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Constrained Control and Estimation by : Graham Goodwin

Download or read book Constrained Control and Estimation written by Graham Goodwin and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in constrained control and estimation have created a need for this comprehensive introduction to the underlying fundamental principles. These advances have significantly broadened the realm of application of constrained control. - Using the principal tools of prediction and optimisation, examples of how to deal with constraints are given, placing emphasis on model predictive control. - New results combine a number of methods in a unique way, enabling you to build on your background in estimation theory, linear control, stability theory and state-space methods. - Companion web site, continually updated by the authors. Easy to read and at the same time containing a high level of technical detail, this self-contained, new approach to methods for constrained control in design will give you a full understanding of the subject.

Advanced Kalman Filtering, Least-Squares and Modeling

Download Advanced Kalman Filtering, Least-Squares and Modeling PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118003160
Total Pages : 559 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Advanced Kalman Filtering, Least-Squares and Modeling by : Bruce P. Gibbs

Download or read book Advanced Kalman Filtering, Least-Squares and Modeling written by Bruce P. Gibbs and published by John Wiley & Sons. This book was released on 2011-03-29 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended primarily as a handbook for engineers who must design practical systems. Its primary goal is to discuss model development in sufficient detail so that the reader may design an estimator that meets all application requirements and is robust to modeling assumptions. Since it is sometimes difficult to a priori determine the best model structure, use of exploratory data analysis to define model structure is discussed. Methods for deciding on the “best” model are also presented. A second goal is to present little known extensions of least squares estimation or Kalman filtering that provide guidance on model structure and parameters, or make the estimator more robust to changes in real-world behavior. A third goal is discussion of implementation issues that make the estimator more accurate or efficient, or that make it flexible so that model alternatives can be easily compared. The fourth goal is to provide the designer/analyst with guidance in evaluating estimator performance and in determining/correcting problems. The final goal is to provide a subroutine library that simplifies implementation, and flexible general purpose high-level drivers that allow both easy analysis of alternative models and access to extensions of the basic filtering. Supplemental materials and up-to-date errata are downloadable at http://booksupport.wiley.com.

State Space Modeling of Time Series

Download State Space Modeling of Time Series PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642758835
Total Pages : 339 pages
Book Rating : 4.6/5 (427 download)

DOWNLOAD NOW!


Book Synopsis State Space Modeling of Time Series by : Masanao Aoki

Download or read book State Space Modeling of Time Series written by Masanao Aoki and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the author adopts a state space approach to time series modeling to provide a new, computer-oriented method for building models for vector-valued time series. This second edition has been completely reorganized and rewritten. Background material leading up to the two types of estimators of the state space models is collected and presented coherently in four consecutive chapters. New, fuller descriptions are given of state space models for autoregressive models commonly used in the econometric and statistical literature. Backward innovation models are newly introduced in this edition in addition to the forward innovation models, and both are used to construct instrumental variable estimators for the model matrices. Further new items in this edition include statistical properties of the two types of estimators, more details on multiplier analysis and identification of structural models using estimated models, incorporation of exogenous signals and choice of model size. A whole new chapter is devoted to modeling of integrated, nearly integrated and co-integrated time series.

Bayesian Inference of State Space Models

Download Bayesian Inference of State Space Models PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303076124X
Total Pages : 503 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Inference of State Space Models by : Kostas Triantafyllopoulos

Download or read book Bayesian Inference of State Space Models written by Kostas Triantafyllopoulos and published by Springer Nature. This book was released on 2021-11-12 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering. Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, includes many of the algorithms and examples presented. The book is essentially self-contained and includes a chapter summarising the prerequisites in undergraduate linear algebra, probability and statistics. An up-to-date and complete account of state space methods, illustrated by real-life data sets and R code, this textbook will appeal to a wide range of students and scientists, notably in the disciplines of statistics, systems engineering, signal processing, data science, finance and econometrics. With numerous exercises in each chapter, and prerequisite knowledge conveniently recalled, it is suitable for upper undergraduate and graduate courses.

Total Least Squares and Errors-in-Variables Modeling

Download Total Least Squares and Errors-in-Variables Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401735522
Total Pages : 389 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Total Least Squares and Errors-in-Variables Modeling by : S. van Huffel

Download or read book Total Least Squares and Errors-in-Variables Modeling written by S. van Huffel and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to a growing interest in Total Least Squares (TLS) and Errors-In-Variables (EIV) modeling by researchers and practitioners, well-known experts from several disciplines were invited to prepare an overview paper and present it at the third international workshop on TLS and EIV modeling held in Leuven, Belgium, August 27-29, 2001. These invited papers, representing two-thirds of the book, together with a selection of other presented contributions yield a complete overview of the main scientific achievements since 1996 in TLS and Errors-In-Variables modeling. In this way, the book nicely completes two earlier books on TLS (SIAM 1991 and 1997). Not only computational issues, but also statistical, numerical, algebraic properties are described, as well as many new generalizations and applications. Being aware of the growing interest in these techniques, it is a strong belief that this book will aid and stimulate users to apply the new techniques and models correctly to their own practical problems.

State Space Systems With Time-Delays Analysis, Identification, and Applications

Download State Space Systems With Time-Delays Analysis, Identification, and Applications PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323972128
Total Pages : 282 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis State Space Systems With Time-Delays Analysis, Identification, and Applications by : Ya Gu

Download or read book State Space Systems With Time-Delays Analysis, Identification, and Applications written by Ya Gu and published by Academic Press. This book was released on 2023-03-25 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: State Space Systems with Time-Delays Analysis, Identification and Applications covers the modeling, identification and control of industrial applications, including system identification, parameter estimation, dynamic simulation, nonlinear control, and other emerging techniques. The book introduces basic time-delay systems, architectures and control methods. Emphasis is placed on the mathematical analysis of these systems, identifying them, and applying them to practical engineering problems such as three independent water tank systems and distillation systems. This book contains a wide range of time-delay system identification methods that can help readers master the system controllers' design methods. - Presents the basic concepts of time delay systems stability analysis and classical time delay system identification methods - Discusses the stability analysis of complex time delay systems - Presents the identification of uncertain and unknown time delay systems - Provides examples of industrial application

Filtering and System Identification

Download Filtering and System Identification PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9781107405028
Total Pages : 0 pages
Book Rating : 4.4/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Filtering and System Identification by : Michel Verhaegen

Download or read book Filtering and System Identification written by Michel Verhaegen and published by Cambridge University Press. This book was released on 2012-07-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.

Econometric Methods with Applications in Business and Economics

Download Econometric Methods with Applications in Business and Economics PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191608408
Total Pages : 1132 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis Econometric Methods with Applications in Business and Economics by : Christiaan Heij

Download or read book Econometric Methods with Applications in Business and Economics written by Christiaan Heij and published by OUP Oxford. This book was released on 2004-03-25 with total page 1132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays applied work in business and economics requires a solid understanding of econometric methods to support decision-making. Combining a solid exposition of econometric methods with an application-oriented approach, this rigorous textbook provides students with a working understanding and hands-on experience of current econometrics. Taking a 'learning by doing' approach, it covers basic econometric methods (statistics, simple and multiple regression, nonlinear regression, maximum likelihood, and generalized method of moments), and addresses the creative process of model building with due attention to diagnostic testing and model improvement. Its last part is devoted to two major application areas: the econometrics of choice data (logit and probit, multinomial and ordered choice, truncated and censored data, and duration data) and the econometrics of time series data (univariate time series, trends, volatility, vector autoregressions, and a brief discussion of SUR models, panel data, and simultaneous equations). · Real-world text examples and practical exercise questions stimulate active learning and show how econometrics can solve practical questions in modern business and economic management. · Focuses on the core of econometrics, regression, and covers two major advanced topics, choice data with applications in marketing and micro-economics, and time series data with applications in finance and macro-economics. · Learning-support features include concise, manageable sections of text, frequent cross-references to related and background material, summaries, computational schemes, keyword lists, suggested further reading, exercise sets, and online data sets and solutions. · Derivations and theory exercises are clearly marked for students in advanced courses. This textbook is perfect for advanced undergraduate students, new graduate students, and applied researchers in econometrics, business, and economics, and for researchers in other fields that draw on modern applied econometrics.

Filtering None-Linear State Space Models. Methods and Economic Applications

Download Filtering None-Linear State Space Models. Methods and Economic Applications PDF Online Free

Author :
Publisher : Rozenberg Publishers
ISBN 13 : 9036101697
Total Pages : 150 pages
Book Rating : 4.0/5 (361 download)

DOWNLOAD NOW!


Book Synopsis Filtering None-Linear State Space Models. Methods and Economic Applications by : Kai Ming Lee

Download or read book Filtering None-Linear State Space Models. Methods and Economic Applications written by Kai Ming Lee and published by Rozenberg Publishers. This book was released on 2010 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fixed Interval Smoothing for State Space Models

Download Fixed Interval Smoothing for State Space Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461516919
Total Pages : 126 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Fixed Interval Smoothing for State Space Models by : Howard L. Weinert

Download or read book Fixed Interval Smoothing for State Space Models written by Howard L. Weinert and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fixed-interval smoothing is a method of extracting useful information from inaccurate data. It has been applied to problems in engineering, the physical sciences, and the social sciences, in areas such as control, communications, signal processing, acoustics, geophysics, oceanography, statistics, econometrics, and structural analysis. This monograph addresses problems for which a linear stochastic state space model is available, in which case the objective is to compute the linear least-squares estimate of the state vector in a fixed interval, using observations previously collected in that interval. The author uses a geometric approach based on the method of complementary models. Using the simplest possible notation, he presents straightforward derivations of the four types of fixed-interval smoothing algorithms, and compares the algorithms in terms of efficiency and applicability. Results show that the best algorithm has received the least attention in the literature. Fixed Interval Smoothing for State Space Models: includes new material on interpolation, fast square root implementations, and boundary value models; is the first book devoted to smoothing; contains an annotated bibliography of smoothing literature; uses simple notation and clear derivations; compares algorithms from a computational perspective; identifies a best algorithm. Fixed Interval Smoothing for State Space Models will be the primary source for those wanting to understand and apply fixed-interval smoothing: academics, researchers, and graduate students in control, communications, signal processing, statistics and econometrics.

Applications and Optimizations of Kalman Filter and Their Variants

Download Applications and Optimizations of Kalman Filter and Their Variants PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 0854665668
Total Pages : 204 pages
Book Rating : 4.8/5 (546 download)

DOWNLOAD NOW!


Book Synopsis Applications and Optimizations of Kalman Filter and Their Variants by : Asadullah Khalid

Download or read book Applications and Optimizations of Kalman Filter and Their Variants written by Asadullah Khalid and published by BoD – Books on Demand. This book was released on 2024-07-17 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications and Optimizations of Kalman Filter and Their Variants is a comprehensive exploration of Kalman filters’ diverse applications and refined optimizations across various domains. It meticulously examines their role in microgrid management, offering adaptive estimation techniques for effective control strategies. The book then delves into distribution system state estimation, showcasing an innovative stochastic programming model using extended Kalman filters for reliable monitoring and control. In the realm of financial modeling, readers gain insights into how Kalman filters enhance trading strategies like pairs trading and partial co-integration, bridging finance and analytics. Moreover, the book discusses Kalman filter optimization, addressing challenges in object tracking and error reduction with techniques like dynamic stochastic approximation algorithms and M-robust estimates. With practical examples and interdisciplinary approaches, this book serves as a valuable resource for researchers, practitioners, and students looking to harness Kalman filter techniques for enhanced efficiency and accuracy across diverse fields.

Linear Estimation

Download Linear Estimation PDF Online Free

Author :
Publisher : Pearson
ISBN 13 :
Total Pages : 888 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Linear Estimation by : Thomas Kailath

Download or read book Linear Estimation written by Thomas Kailath and published by Pearson. This book was released on 2000 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt: This original work offers the most comprehensive and up-to-date treatment of the important subject of optimal linear estimation, which is encountered in many areas of engineering such as communications, control, and signal processing, and also in several other fields, e.g., econometrics and statistics. The book not only highlights the most significant contributions to this field during the 20th century, including the works of Wiener and Kalman, but it does so in an original and novel manner that paves the way for further developments. This book contains a large collection of problems that complement it and are an important part of piece, in addition to numerous sections that offer interesting historical accounts and insights. The book also includes several results that appear in print for the first time. FEATURES/BENEFITS Takes a geometric point of view. Emphasis on the numerically favored array forms of many algorithms. Emphasis on equivalence and duality concepts for the solution of several related problems in adaptive filtering, estimation, and control. These features are generally absent in most prior treatments, ostensibly on the grounds that they are too abstract and complicated. It is the authors' hope that these misconceptions will be dispelled by the presentation herein, and that the fundamental simplicity and power of these ideas will be more widely recognized and exploited. Among other things, these features already yielded new insights and new results for linear and nonlinear problems in areas such as adaptive filtering, quadratic control, and estimation, including the recent Hà theories.

Identification and System Parameter Estimation 1982

Download Identification and System Parameter Estimation 1982 PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483165787
Total Pages : 869 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Identification and System Parameter Estimation 1982 by : G. A. Bekey

Download or read book Identification and System Parameter Estimation 1982 written by G. A. Bekey and published by Elsevier. This book was released on 2016-06-06 with total page 869 pages. Available in PDF, EPUB and Kindle. Book excerpt: Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.

Applications of State Space Models in Finance

Download Applications of State Space Models in Finance PDF Online Free

Author :
Publisher : Universitätsverlag Göttingen
ISBN 13 : 3941875221
Total Pages : 235 pages
Book Rating : 4.9/5 (418 download)

DOWNLOAD NOW!


Book Synopsis Applications of State Space Models in Finance by : Sascha Mergner

Download or read book Applications of State Space Models in Finance written by Sascha Mergner and published by Universitätsverlag Göttingen. This book was released on 2009 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space models play a key role in the estimation of time-varying sensitivities in financial markets. The objective of this book is to analyze the relative merits of modern time series techniques, such as Markov regime switching and the Kalman filter, to model structural changes in the context of widely used concepts in finance. The presented material will be useful for financial economists and practitioners who are interested in taking time-variation in the relationship between financial assets and key economic factors explicitly into account. The empirical part illustrates the application of the various methods under consideration. As a distinctive feature, it includes a comprehensive analysis of the ability of time-varying coefficient models to estimate and predict the conditional nature of systematic risks for European industry portfolios.

Introduction to Multiple Time Series Analysis

Download Introduction to Multiple Time Series Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662026910
Total Pages : 556 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Multiple Time Series Analysis by : Helmut Lütkepohl

Download or read book Introduction to Multiple Time Series Analysis written by Helmut Lütkepohl and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Using Local State Space Model Approximation for Fundamental Signal Analysis Tasks

Download Using Local State Space Model Approximation for Fundamental Signal Analysis Tasks PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 3866287925
Total Pages : 288 pages
Book Rating : 4.8/5 (662 download)

DOWNLOAD NOW!


Book Synopsis Using Local State Space Model Approximation for Fundamental Signal Analysis Tasks by : Elizabeth Ren

Download or read book Using Local State Space Model Approximation for Fundamental Signal Analysis Tasks written by Elizabeth Ren and published by BoD – Books on Demand. This book was released on 2023-05-26 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: With increasing availability of computation power, digital signal analysis algorithms have the potential of evolving from the common framewise operational method to samplewise operations which offer more precision in time. This thesis discusses a set of methods with samplewise operations: local signal approximation via Recursive Least Squares (RLS) where a mathematical model is fit to the signal within a sliding window at each sample. Thereby both the signal models and cost windows are generated by Autonomous Linear State Space Models (ALSSMs). The modeling capability of ALSSMs is vast, as they can model exponentials, polynomials and sinusoidal functions as well as any linear and multiplicative combination thereof. The fitting method offers efficient recursions, subsample precision by way of the signal model and additional goodness of fit measures based on the recursively computed fitting cost. Classical methods such as standard Savitzky-Golay (SG) smoothing filters and the Short-Time Fourier Transform (STFT) are united under a common framework. First, we complete the existing framework. The ALSSM parameterization and RLS recursions are provided for a general function. The solution of the fit parameters for different constraint problems are reviewed. Moreover, feature extraction from both the fit parameters and the cost is detailed as well as examples of their use. In particular, we introduce terminology to analyze the fitting problem from the perspective of projection to a local Hilbert space and as a linear filter. Analytical rules are given for computation of the equivalent filter response and the steady-state precision matrix of the cost. After establishing the local approximation framework, we further discuss two classes of signal models in particular, namely polynomial and sinusoidal functions. The signal models are complementary, as by nature, polynomials are suited for time-domain description of signals while sinusoids are suited for the frequency-domain. For local approximation of polynomials, we derive analytical expressions for the steady-state covariance matrix and the linear filter of the coefficients based on the theory of orthogonal polynomial bases. We then discuss the fundamental application of smoothing filters based on local polynomial approximation. We generalize standard SG filters to any ALSSM window and introduce a novel class of smoothing filters based on polynomial fitting to running sums.

Parameter Estimation and Inverse Problems

Download Parameter Estimation and Inverse Problems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128134232
Total Pages : 406 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Parameter Estimation and Inverse Problems by : Richard C. Aster

Download or read book Parameter Estimation and Inverse Problems written by Richard C. Aster and published by Elsevier. This book was released on 2018-10-16 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner