Lattices over Orders II

Download Lattices over Orders II PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540363017
Total Pages : 393 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Lattices over Orders II by : Klaus W. Roggenkamp

Download or read book Lattices over Orders II written by Klaus W. Roggenkamp and published by Springer. This book was released on 2006-11-15 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Characters of Groups and Lattices Over Orders

Download Characters of Groups and Lattices Over Orders PDF Online Free

Author :
Publisher : de Gruyter
ISBN 13 : 9783110702439
Total Pages : 420 pages
Book Rating : 4.7/5 (24 download)

DOWNLOAD NOW!


Book Synopsis Characters of Groups and Lattices Over Orders by : Alexander Zimmermann

Download or read book Characters of Groups and Lattices Over Orders written by Alexander Zimmermann and published by de Gruyter. This book was released on 2021-12-20 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook leading coherently from classical character theory to the theory of lattices over orders and integral representations of finite groups. After the introduction to simple modules allowing a non degenerate invariant bilinear form in any characteristic the author illustrates step by step the approach given by Sin and Willems. Dirichlet characters and results on primes in arithmetic progressions are given as applications.

Lattices and Ordered Sets

Download Lattices and Ordered Sets PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387789014
Total Pages : 307 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Lattices and Ordered Sets by : Steven Roman

Download or read book Lattices and Ordered Sets written by Steven Roman and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.

Introduction to Lattices and Order

Download Introduction to Lattices and Order PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107717523
Total Pages : 316 pages
Book Rating : 4.1/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Lattices and Order by : B. A. Davey

Download or read book Introduction to Lattices and Order written by B. A. Davey and published by Cambridge University Press. This book was released on 2002-04-18 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Lattices and Ordered Algebraic Structures

Download Lattices and Ordered Algebraic Structures PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1852339055
Total Pages : 311 pages
Book Rating : 4.8/5 (523 download)

DOWNLOAD NOW!


Book Synopsis Lattices and Ordered Algebraic Structures by : T.S. Blyth

Download or read book Lattices and Ordered Algebraic Structures written by T.S. Blyth and published by Springer Science & Business Media. This book was released on 2005-04-18 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS

Lattice-Ordered Groups

Download Lattice-Ordered Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400928718
Total Pages : 197 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Lattice-Ordered Groups by : M.E Anderson

Download or read book Lattice-Ordered Groups written by M.E Anderson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of groups equipped with a compatible lattice order ("lattice-ordered groups" or "I!-groups") has arisen in a number of different contexts. Examples of this include the study of ideals and divisibility, dating back to the work of Dedekind and continued by Krull; the pioneering work of Hahn on totally ordered abelian groups; and the work of Kantorovich and other analysts on partially ordered function spaces. After the Second World War, the theory of lattice-ordered groups became a subject of study in its own right, following the publication of fundamental papers by Birkhoff, Nakano and Lorenzen. The theory blossomed under the leadership of Paul Conrad, whose important papers in the 1960s provided the tools for describing the structure for many classes of I!-groups in terms of their convex I!-subgroups. A particularly significant success of this approach was the generalization of Hahn's embedding theorem to the case of abelian lattice-ordered groups, work done with his students John Harvey and Charles Holland. The results of this period are summarized in Conrad's "blue notes" [C].

The Theory of Lattice-Ordered Groups

Download The Theory of Lattice-Ordered Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401583048
Total Pages : 408 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Lattice-Ordered Groups by : V.M. Kopytov

Download or read book The Theory of Lattice-Ordered Groups written by V.M. Kopytov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper [1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P.

Ordered Sets and Lattices II

Download Ordered Sets and Lattices II PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821895887
Total Pages : 262 pages
Book Rating : 4.8/5 (958 download)

DOWNLOAD NOW!


Book Synopsis Ordered Sets and Lattices II by :

Download or read book Ordered Sets and Lattices II written by and published by American Mathematical Soc.. This book was released on with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This indispensable reference source contains a wealth of information on lattice theory. The book presents a survey of virtually everything published in the fields of partially ordered sets, semilattices, lattices, and Boolean algebras that was reviewed in Referativnyi Zhurnal Matematika from mid-1982 to the end of 1985. A continuation of a previous volume (the English translation of which was published by the AMS in 1989, as volume 141 in Translations - Series 2), this comprehensive work contains more than 2200 references. Many of the papers covered here were originally published in virtually inaccessible places. The compilation of the volume was directed by Milan Kolibiar of Comenius University at Bratislava and Lev A. Skornyakov of Moscow University. Of interest to mathematicians, as well as to philosophers and computer scientists in certain areas, this unique compendium is a must for any mathematical library.

Lattice Theory

Download Lattice Theory PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048647173X
Total Pages : 242 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Lattice Theory by : George Gratzer

Download or read book Lattice Theory written by George Gratzer and published by Courier Corporation. This book was released on 2009-01-01 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This outstanding text is written in clear language and enhanced with many exercises, diagrams, and proofs. It discusses historical developments and future directions and provides an extensive bibliography and references. 1971 edition.

Introduction to Lattice Theory with Computer Science Applications

Download Introduction to Lattice Theory with Computer Science Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119069734
Total Pages : 272 pages
Book Rating : 4.1/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Lattice Theory with Computer Science Applications by : Vijay K. Garg

Download or read book Introduction to Lattice Theory with Computer Science Applications written by Vijay K. Garg and published by John Wiley & Sons. This book was released on 2016-03-02 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.

A Compendium of Continuous Lattices

Download A Compendium of Continuous Lattices PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642676782
Total Pages : 390 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis A Compendium of Continuous Lattices by : G. Gierz

Download or read book A Compendium of Continuous Lattices written by G. Gierz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: A mathematics book with six authors is perhaps a rare enough occurrence to make a reader ask how such a collaboration came about. We begin, therefore, with a few words on how we were brought to the subject over a ten-year period, during part of which time we did not all know each other. We do not intend to write here the history of continuous lattices but rather to explain our own personal involvement. History in a more proper sense is provided by the bibliography and the notes following the sections of the book, as well as by many remarks in the text. A coherent discussion of the content and motivation of the whole study is reserved for the introduction. In October of 1969 Dana Scott was lead by problems of semantics for computer languages to consider more closely partially ordered structures of function spaces. The idea of using partial orderings to correspond to spaces of partially defined functions and functionals had appeared several times earlier in recursive function theory; however, there had not been very sustained interest in structures of continuous functionals. These were the ones Scott saw that he needed. His first insight was to see that - in more modern terminology - the category of algebraic lattices and the (so-called) Scott-continuous functions is cartesian closed.

Lattice-Ordered Groups

Download Lattice-Ordered Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9789027726438
Total Pages : 210 pages
Book Rating : 4.7/5 (264 download)

DOWNLOAD NOW!


Book Synopsis Lattice-Ordered Groups by : M.E Anderson

Download or read book Lattice-Ordered Groups written by M.E Anderson and published by Springer Science & Business Media. This book was released on 1988-01-31 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of groups equipped with a compatible lattice order ("lattice-ordered groups" or "I!-groups") has arisen in a number of different contexts. Examples of this include the study of ideals and divisibility, dating back to the work of Dedekind and continued by Krull; the pioneering work of Hahn on totally ordered abelian groups; and the work of Kantorovich and other analysts on partially ordered function spaces. After the Second World War, the theory of lattice-ordered groups became a subject of study in its own right, following the publication of fundamental papers by Birkhoff, Nakano and Lorenzen. The theory blossomed under the leadership of Paul Conrad, whose important papers in the 1960s provided the tools for describing the structure for many classes of I!-groups in terms of their convex I!-subgroups. A particularly significant success of this approach was the generalization of Hahn's embedding theorem to the case of abelian lattice-ordered groups, work done with his students John Harvey and Charles Holland. The results of this period are summarized in Conrad's "blue notes" [C].

Associahedra, Tamari Lattices and Related Structures

Download Associahedra, Tamari Lattices and Related Structures PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034804059
Total Pages : 446 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Associahedra, Tamari Lattices and Related Structures by : Folkert Müller-Hoissen

Download or read book Associahedra, Tamari Lattices and Related Structures written by Folkert Müller-Hoissen and published by Springer Science & Business Media. This book was released on 2012-07-13 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This has been the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called associahedra, which in fact also appeared first in Tamari's thesis. By now these beautiful structures have made their appearance in many different areas of pure and applied mathematics, such as algebra, combinatorics, computer science, category theory, geometry, topology, and also in physics. Their interdisciplinary nature provides much fascination and value. On the occasion of Dov Tamari's centennial birthday, this book provides an introduction to topical research related to Tamari's work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations.

Topological Duality for Distributive Lattices

Download Topological Duality for Distributive Lattices PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009349716
Total Pages : 370 pages
Book Rating : 4.0/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Topological Duality for Distributive Lattices by : Mai Gehrke

Download or read book Topological Duality for Distributive Lattices written by Mai Gehrke and published by Cambridge University Press. This book was released on 2024-02-29 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing Stone–Priestley duality theory and its applications to logic and theoretical computer science, this book equips graduate students and researchers with the theoretical background necessary for reading and understanding current research in the area. After giving a thorough introduction to the algebraic, topological, logical, and categorical aspects of the theory, the book covers two advanced applications in computer science, namely in domain theory and automata theory. These topics are at the forefront of active research seeking to unify semantic methods with more algorithmic topics in finite model theory. Frequent exercises punctuate the text, with hints and references provided.

Varieties of Lattices

Download Varieties of Lattices PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540475141
Total Pages : 171 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Varieties of Lattices by : Peter Jipsen

Download or read book Varieties of Lattices written by Peter Jipsen and published by Springer. This book was released on 2006-11-15 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.

Subgroup Lattices of Groups

Download Subgroup Lattices of Groups PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110868644
Total Pages : 589 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Subgroup Lattices of Groups by : Roland Schmidt

Download or read book Subgroup Lattices of Groups written by Roland Schmidt and published by Walter de Gruyter. This book was released on 2011-07-20 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Residuated Lattices: An Algebraic Glimpse at Substructural Logics

Download Residuated Lattices: An Algebraic Glimpse at Substructural Logics PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080489648
Total Pages : 532 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Residuated Lattices: An Algebraic Glimpse at Substructural Logics by : Nikolaos Galatos

Download or read book Residuated Lattices: An Algebraic Glimpse at Substructural Logics written by Nikolaos Galatos and published by Elsevier. This book was released on 2007-04-25 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric.