Large-Scale Inference

Download Large-Scale Inference PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139492136
Total Pages : pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Large-Scale Inference by : Bradley Efron

Download or read book Large-Scale Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2012-11-29 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.

Nonparametric Inference on Manifolds

Download Nonparametric Inference on Manifolds PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107019583
Total Pages : 252 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Inference on Manifolds by : Abhishek Bhattacharya

Download or read book Nonparametric Inference on Manifolds written by Abhishek Bhattacharya and published by Cambridge University Press. This book was released on 2012-04-05 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideal for statisticians, this book will also interest probabilists, mathematicians, computer scientists, and morphometricians with mathematical training. It presents a systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important applications in medical diagnostics, image analysis and machine vision.

Fundamentals of Nonparametric Bayesian Inference

Download Fundamentals of Nonparametric Bayesian Inference PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108210120
Total Pages : 671 pages
Book Rating : 4.1/5 (82 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Nonparametric Bayesian Inference by : Subhashis Ghosal

Download or read book Fundamentals of Nonparametric Bayesian Inference written by Subhashis Ghosal and published by Cambridge University Press. This book was released on 2017-06-26 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics.

Non-Standard Parametric Statistical Inference

Download Non-Standard Parametric Statistical Inference PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0192518313
Total Pages : 432 pages
Book Rating : 4.1/5 (925 download)

DOWNLOAD NOW!


Book Synopsis Non-Standard Parametric Statistical Inference by : Russell Cheng

Download or read book Non-Standard Parametric Statistical Inference written by Russell Cheng and published by Oxford University Press. This book was released on 2017-09-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the fitting of parametric statistical models to data samples. Emphasis is placed on: (i) how to recognize situations where the problem is non-standard when parameter estimates behave unusually, and (ii) the use of parametric bootstrap resampling methods in analyzing such problems. A frequentist likelihood-based viewpoint is adopted, for which there is a well-established and very practical theory. The standard situation is where certain widely applicable regularity conditions hold. However, there are many apparently innocuous situations where standard theory breaks down, sometimes spectacularly. Most of the departures from regularity are described geometrically, with only sufficient mathematical detail to clarify the non-standard nature of a problem and to allow formulation of practical solutions. The book is intended for anyone with a basic knowledge of statistical methods, as is typically covered in a university statistical inference course, wishing to understand or study how standard methodology might fail. Easy to understand statistical methods are presented which overcome these difficulties, and demonstrated by detailed examples drawn from real applications. Simple and practical model-building is an underlying theme. Parametric bootstrap resampling is used throughout for analyzing the properties of fitted models, illustrating its ease of implementation even in non-standard situations. Distributional properties are obtained numerically for estimators or statistics not previously considered in the literature because their theoretical distributional properties are too hard to obtain theoretically. Bootstrap results are presented mainly graphically in the book, providing an accessible demonstration of the sampling behaviour of estimators.

Large-Scale Knowledge Resources. Construction and Application

Download Large-Scale Knowledge Resources. Construction and Application PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540781587
Total Pages : 375 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Large-Scale Knowledge Resources. Construction and Application by : Takenobu Tokunaga

Download or read book Large-Scale Knowledge Resources. Construction and Application written by Takenobu Tokunaga and published by Springer Science & Business Media. This book was released on 2008-02-08 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atthestartofthe21stcentury,wearenowwellonthewaytowardsaknowled- intensive society, in which knowledge plays ever more important roles. Thus, research interest should inevitably shift from information to knowledge, with the problems of building, organizing, maintaining and utilizing knowledge - coming centralissues in a wide varietyof ?elds. The 21stCentury COE program “Framework for Systematization and Application of Large-scale Knowledge - sources (COE-LKR)” conducted by the Tokyo Institute of Technology is one of several early attempts worldwide to address these important issues. Inspired by this project, LKR2008 aimed at bringing together diverse contributions in cognitive science, computer science, education and linguistics to explore design, construction, extension, maintenance, validation and application of knowledge. Respondingtoourcallforpapers,wereceived38submissionfromavarietyof researchareas.EachpaperwasreviewedbythreeProgramCommitteemembers. Since we were aiming at an interdisciplinary conference covering a wide range of topics concerning large-scale knowledge resources (LKR), each paper was assigned a reviewer from a topic area outside the main thrust of the paper. This reviewer was asked to assess whether the authors described the moti- tion and importance of their work in a comprehensible manner even for readers in other research areas. Following a rigorous reviewing process, we accepted 14 regular papers and 12 poster papers.

Handbook of Multiple Comparisons

Download Handbook of Multiple Comparisons PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429633882
Total Pages : 418 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Multiple Comparisons by : Xinping Cui

Download or read book Handbook of Multiple Comparisons written by Xinping Cui and published by CRC Press. This book was released on 2021-11-18 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by experts that include originators of some key ideas, chapters in the Handbook of Multiple Testing cover multiple comparison problems big and small, with guidance toward error rate control and insights on how principles developed earlier can be applied to current and emerging problems. Some highlights of the coverages are as follows. Error rate control is useful for controlling the incorrect decision rate. Chapter 1 introduces Tukey's original multiple comparison error rates and point to how they have been applied and adapted to modern multiple comparison problems as discussed in the later chapters. Principles endure. While the closed testing principle is more familiar, Chapter 4 shows the partitioning principle can derive confidence sets for multiple tests, which may become important as the profession goes beyond making decisions based on p-values. Multiple comparisons of treatment efficacy often involve multiple doses and endpoints. Chapter 12 on multiple endpoints explains how different choices of endpoint types lead to different multiplicity adjustment strategies, while Chapter 11 on the MCP-Mod approach is particularly useful for dose-finding. To assess efficacy in clinical trials with multiple doses and multiple endpoints, the reader can see the traditional approach in Chapter 2, the Graphical approach in Chapter 5, and the multivariate approach in Chapter 3. Personalized/precision medicine based on targeted therapies, already a reality, naturally leads to analysis of efficacy in subgroups. Chapter 13 draws attention to subtle logical issues in inferences on subgroups and their mixtures, with a principled solution that resolves these issues. This chapter has implication toward meeting the ICHE9R1 Estimands requirement. Besides the mere multiple testing methodology itself, the handbook also covers related topics like the statistical task of model selection in Chapter 7 or the estimation of the proportion of true null hypotheses (or, in other words, the signal prevalence) in Chapter 8. It also contains decision-theoretic considerations regarding the admissibility of multiple tests in Chapter 6. The issue of selected inference is addressed in Chapter 9. Comparison of responses can involve millions of voxels in medical imaging or SNPs in genome-wide association studies (GWAS). Chapter 14 and Chapter 15 provide state of the art methods for large scale simultaneous inference in these settings.

Bayesian Nonparametric Data Analysis

Download Bayesian Nonparametric Data Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319189689
Total Pages : 203 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nonparametric Data Analysis by : Peter Müller

Download or read book Bayesian Nonparametric Data Analysis written by Peter Müller and published by Springer. This book was released on 2015-06-17 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.

Bayesian Nonparametrics for Causal Inference and Missing Data

Download Bayesian Nonparametrics for Causal Inference and Missing Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000927717
Total Pages : 263 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nonparametrics for Causal Inference and Missing Data by : Michael J. Daniels

Download or read book Bayesian Nonparametrics for Causal Inference and Missing Data written by Michael J. Daniels and published by CRC Press. This book was released on 2023-08-23 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest. The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials. Features • Thorough discussion of both BNP and its interplay with causal inference and missing data • How to use BNP and g-computation for causal inference and non-ignorable missingness • How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions • Detailed case studies illustrating the application of BNP methods to causal inference and missing data • R code and/or packages to implement BNP in causal inference and missing data problems The book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers.

Proceedings of the Third SIAM International Conference on Data Mining

Download Proceedings of the Third SIAM International Conference on Data Mining PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898715453
Total Pages : 368 pages
Book Rating : 4.7/5 (154 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the Third SIAM International Conference on Data Mining by : Daniel Barbara

Download or read book Proceedings of the Third SIAM International Conference on Data Mining written by Daniel Barbara and published by SIAM. This book was released on 2003-01-01 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third SIAM International Conference on Data Mining provided an open forum for the presentation, discussion and development of innovative algorithms, software and theories for data mining applications and data intensive computation. This volume includes 21 research papers.

Large Scale Inverse Problems

Download Large Scale Inverse Problems PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110282267
Total Pages : 216 pages
Book Rating : 4.1/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Large Scale Inverse Problems by : Mike Cullen

Download or read book Large Scale Inverse Problems written by Mike Cullen and published by Walter de Gruyter. This book was released on 2013-08-29 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is thesecond volume of a three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" that took placein Linz, Austria, October 3-7, 2011. This volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications. The solution of inverse problems is fundamental to a wide variety of applications such as weather forecasting, medical tomography, and oil exploration. Regularisation techniques are needed to ensure solutions of sufficient quality to be useful, and soundly theoretically based. This book addresses the common techniques required for all the applications, and is thus truly interdisciplinary. Thiscollection of surveyarticlesfocusses onthe large inverse problems commonly arising in simulation and forecasting in the earth sciences. For example, operational weather forecasting models have between 107 and 108 degrees of freedom. Even so, these degrees of freedom represent grossly space-time averaged properties of the atmosphere. Accurate forecasts require accurate initial conditions. With recent developments in satellite data, there are between 106 and 107 observations each day. However, while these also represent space-time averaged properties, the averaging implicit in the measurements is quite different from that used in the models. In atmosphere and ocean applications, there is a physically-based model available which can be used to regularise the problem. We assume that there is a set of observations with known error characteristics available over a period of time. The basic deterministic technique is to fit a model trajectory to the observations over a period of time to within the observation error. Since the model is not perfect the model trajectory has to be corrected, which defines the data assimilation problem. The stochastic view can be expressed by using an ensemble of model trajectories, and calculating corrections to both the mean value and the spread which allow the observations to be fitted by each ensemble member. In other areas of earth science, only the structure of the model formulation itself is known and the aim is to use the past observation history to determine the unknown model parameters. The book records the achievements of Workshop2 "Large-Scale Inverse Problems and Applications in the Earth Sciences". Itinvolves experts in the theory of inverse problems together with experts working on both theoretical and practical aspects of the techniques by which large inverse problems arise in the earth sciences.

Data Science

Download Data Science PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319557238
Total Pages : 346 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Data Science by : Francesco Palumbo

Download or read book Data Science written by Francesco Palumbo and published by Springer. This book was released on 2017-07-04 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume on the latest advances in data science covers a wide range of topics in the context of data analysis and classification. In particular, it includes contributions on classification methods for high-dimensional data, clustering methods, multivariate statistical methods, and various applications. The book gathers a selection of peer-reviewed contributions presented at the Fifteenth Conference of the International Federation of Classification Societies (IFCS2015), which was hosted by the Alma Mater Studiorum, University of Bologna, from July 5 to 8, 2015.

PRICAI 2016: Trends in Artificial Intelligence

Download PRICAI 2016: Trends in Artificial Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319429116
Total Pages : 841 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis PRICAI 2016: Trends in Artificial Intelligence by : Richard Booth

Download or read book PRICAI 2016: Trends in Artificial Intelligence written by Richard Booth and published by Springer. This book was released on 2016-08-09 with total page 841 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 14th Pacific Rim Conference on Artificial Intelligence, PRICAI 2016, held in Phuket, Thailand, in August 2016. The 53 regular papers and 15 short papers presented in this volume were carefully reviewed and selected from 161 submissions. Pricai covers a wide range of topics such as AI foundations; applications of AI; semantic web; information retrieval; constraint satisfaction; multimodal interaction; knowledge representation; social networks; ad-hoc networks; algorithms; software architecture; machine learning; and smart modeling and simulation.

Moving Beyond Non-Informative Prior Distributions: Achieving the Full Potential of Bayesian Methods for Psychological Research

Download Moving Beyond Non-Informative Prior Distributions: Achieving the Full Potential of Bayesian Methods for Psychological Research PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889742148
Total Pages : 197 pages
Book Rating : 4.8/5 (897 download)

DOWNLOAD NOW!


Book Synopsis Moving Beyond Non-Informative Prior Distributions: Achieving the Full Potential of Bayesian Methods for Psychological Research by : Christoph Koenig

Download or read book Moving Beyond Non-Informative Prior Distributions: Achieving the Full Potential of Bayesian Methods for Psychological Research written by Christoph Koenig and published by Frontiers Media SA. This book was released on 2022-02-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fundamentals of Nonparametric Bayesian Inference

Download Fundamentals of Nonparametric Bayesian Inference PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521878268
Total Pages : 671 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Nonparametric Bayesian Inference by : Subhashis Ghosal

Download or read book Fundamentals of Nonparametric Bayesian Inference written by Subhashis Ghosal and published by Cambridge University Press. This book was released on 2017-06-26 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.

World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany

Download World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642038913
Total Pages : 366 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany by : Olaf Dössel

Download or read book World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany written by Olaf Dössel and published by Springer Science & Business Media. This book was released on 2010-01-04 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in–depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.

Case Studies in Applied Bayesian Data Science

Download Case Studies in Applied Bayesian Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030425533
Total Pages : 415 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Case Studies in Applied Bayesian Data Science by : Kerrie L. Mengersen

Download or read book Case Studies in Applied Bayesian Data Science written by Kerrie L. Mengersen and published by Springer Nature. This book was released on 2020-05-28 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a range of substantive applied problems within Bayesian Statistics along with their Bayesian solutions, this book arises from a research program at CIRM in France in the second semester of 2018, which supported Kerrie Mengersen as a visiting Jean-Morlet Chair and Pierre Pudlo as the local Research Professor. The field of Bayesian statistics has exploded over the past thirty years and is now an established field of research in mathematical statistics and computer science, a key component of data science, and an underpinning methodology in many domains of science, business and social science. Moreover, while remaining naturally entwined, the three arms of Bayesian statistics, namely modelling, computation and inference, have grown into independent research fields. While the research arms of Bayesian statistics continue to grow in many directions, they are harnessed when attention turns to solving substantive applied problems. Each such problem set has its own challenges and hence draws from the suite of research a bespoke solution. The book will be useful for both theoretical and applied statisticians, as well as practitioners, to inspect these solutions in the context of the problems, in order to draw further understanding, awareness and inspiration.

Statistical Inference

Download Statistical Inference PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420099663
Total Pages : 424 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Statistical Inference by : Ayanendranath Basu

Download or read book Statistical Inference written by Ayanendranath Basu and published by CRC Press. This book was released on 2011-06-22 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many ways, estimation by an appropriate minimum distance method is one of the most natural ideas in statistics. However, there are many different ways of constructing an appropriate distance between the data and the model: the scope of study referred to by "Minimum Distance Estimation" is literally huge. Filling a statistical resource gap, Stati