Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Large Eddy Simulation Of A Controlled Auto Ignition Engine Using A Multi Dimensional Tabulated Chemistry Approach
Download Large Eddy Simulation Of A Controlled Auto Ignition Engine Using A Multi Dimensional Tabulated Chemistry Approach full books in PDF, epub, and Kindle. Read online Large Eddy Simulation Of A Controlled Auto Ignition Engine Using A Multi Dimensional Tabulated Chemistry Approach ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Modeling and Simulation of Turbulent Combustion by : Santanu De
Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.
Book Synopsis Turbulent Premixed Flames by : Nedunchezhian Swaminathan
Download or read book Turbulent Premixed Flames written by Nedunchezhian Swaminathan and published by Cambridge University Press. This book was released on 2011-04-25 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.
Book Synopsis Turbulent Flows by : Stephen B. Pope
Download or read book Turbulent Flows written by Stephen B. Pope and published by Cambridge University Press. This book was released on 2000-08-10 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text on turbulent flows, an important topic in fluid dynamics. It is up-to-date, comprehensive, designed for teaching, and is based on a course taught by the author at Cornell University for a number of years. The book consists of two parts followed by a number of appendices. Part I provides a general introduction to turbulent flows, how they behave, how they can be described quantitatively, and the fundamental physical processes involved. Part II is concerned with different approaches for modelling or simulating turbulent flows. The necessary mathematical techniques are presented in the appendices. This book is primarily intended as a graduate level text in turbulent flows for engineering students, but it may also be valuable to students in applied mathematics, physics, oceanography and atmospheric sciences, as well as researchers and practising engineers.
Author :P. A. Lakshminarayanan Publisher :Springer Science & Business Media ISBN 13 :904813885X Total Pages :313 pages Book Rating :4.0/5 (481 download)
Book Synopsis Modelling Diesel Combustion by : P. A. Lakshminarayanan
Download or read book Modelling Diesel Combustion written by P. A. Lakshminarayanan and published by Springer Science & Business Media. This book was released on 2010-03-03 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.
Book Synopsis Turbulent Combustion Modeling by : Tarek Echekki
Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.
Book Synopsis Combustion Engines Development by : Günter P. Merker
Download or read book Combustion Engines Development written by Günter P. Merker and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.
Book Synopsis HCCI and CAI Engines for the Automotive Industry by : Hua Zhao
Download or read book HCCI and CAI Engines for the Automotive Industry written by Hua Zhao and published by CRC Press. This book was released on 2007-09-10 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality. HCCI a.
Book Synopsis Turbulent Combustion by : Norbert Peters
Download or read book Turbulent Combustion written by Norbert Peters and published by Cambridge University Press. This book was released on 2000-08-15 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.
Book Synopsis Theoretical and Numerical Combustion by : Thierry Poinsot
Download or read book Theoretical and Numerical Combustion written by Thierry Poinsot and published by R.T. Edwards, Inc.. This book was released on 2005 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing numerical techniques for combustion, this textbook describes both laminar and turbulent flames, addresses the problem of flame-wall interaction, and presents a series of theoretical tools used to study the coupling phenomena between combustion and acoustics. The second edition incorporates recent advances in unsteady simulation methods,
Book Synopsis Mixture Formation in Internal Combustion Engines by : Carsten Baumgarten
Download or read book Mixture Formation in Internal Combustion Engines written by Carsten Baumgarten and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.
Book Synopsis Large Eddy Simulation of Complex Engineering and Geophysical Flows by : Boris Galperin
Download or read book Large Eddy Simulation of Complex Engineering and Geophysical Flows written by Boris Galperin and published by Cambridge University Press. This book was released on 1993-11-26 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1993, this book was the first to offer a comprehensive review of large eddy simulations (LES) - the history, state of the art, and promising directions for research. Among topics covered are fundamentals of LES; LES of incompressible, compressible, and reacting flows; LES of atmospheric, oceanic, and environmental flows; and LES and massivelt parallel computing. The book grew out of an international workshop that, for the first time, brought together leading researchers in engineering and geophysics to discuss developments and applications of LES models in their respective fields. It will be of value to anyone with an interest in turbulence modelling.
Book Synopsis Homogeneous Charge Compression Ignition (HCCI) Engines by : Fuquan Zhao
Download or read book Homogeneous Charge Compression Ignition (HCCI) Engines written by Fuquan Zhao and published by SAE International. This book was released on 2003-01-01 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: The homogeneous charge, compression-ignition (HCCI) combustion process has the potential to significantly reduce NOx and particulate emissions, while achieving high thermal efficiency and the capability of operating with a wide variety of fuels. This makes the HCCI engine an attractive technology that can ostensibly provide diesel-like fuel efficiency and very low emissions, which may allow emissions compliance to occur without relying on lean aftertreatment systems. A profound increase in the level of research and development of this technology has occurred in the last decade. This book gathers contributions from experts in both industry and academia, providing a basic introduction to the state-of-the-art of HCCI technology, a critical review of current HCCI research and development efforts, and perspective for the future. Chapters cover: Gasoline-Fueled HCCI Engines; Diesel-Fueled HCCI Engines; Alternative Fuels and Fuel Additives for HCCI Engines; HCCI Control and Operating Range Extension; Kinetics of HCCI Combustion; HCCI Engine Modeling Approaches.In addition to the extensive overview of terminology, physical processes, and future needs, each chapter also features select SAE papers (a total of 41 are included in the book), as well as a comprehensive list of references related to the subjects. Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues provides a valuable base of information for those interested in learning about this rapidly-progressing technology which has the potential to enhance fuel economy and reduce emissions.
Book Synopsis Fundamentals of Combustion Processes by : Sara McAllister
Download or read book Fundamentals of Combustion Processes written by Sara McAllister and published by Springer Science & Business Media. This book was released on 2011-05-10 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Combustion Processes is designed as a textbook for an upper-division undergraduate and graduate level combustion course in mechanical engineering. The authors focus on the fundamental theory of combustion and provide a simplified discussion of basic combustion parameters and processes such as thermodynamics, chemical kinetics, ignition, diffusion and pre-mixed flames. The text includes exploration of applications, example exercises, suggested homework problems and videos of laboratory demonstrations
Book Synopsis International Aerospace Abstracts by :
Download or read book International Aerospace Abstracts written by and published by . This book was released on 1998 with total page 920 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Unsteady Computational Fluid Dynamics in Aeronautics by : P.G. Tucker
Download or read book Unsteady Computational Fluid Dynamics in Aeronautics written by P.G. Tucker and published by Springer Science & Business Media. This book was released on 2013-08-30 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France
Book Synopsis Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines by : Jihad Badra
Download or read book Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines written by Jihad Badra and published by Elsevier. This book was released on 2022-01-28 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines summarizes recent developments in Artificial Intelligence (AI)/Machine Learning (ML) and data driven optimization and calibration techniques for internal combustion engines. The book covers AI/ML and data driven methods to optimize fuel formulations and engine combustion systems, predict cycle to cycle variations, and optimize after-treatment systems and experimental engine calibration. It contains all the details of the latest optimization techniques along with their application to ICE, making it ideal for automotive engineers, mechanical engineers, OEMs and R&D centers involved in engine design. Provides AI/ML and data driven optimization techniques in combination with Computational Fluid Dynamics (CFD) to optimize engine combustion systems Features a comprehensive overview of how AI/ML techniques are used in conjunction with simulations and experiments Discusses data driven optimization techniques for fuel formulations and vehicle control calibration
Book Synopsis Gas Turbine Emissions by : Timothy C. Lieuwen
Download or read book Gas Turbine Emissions written by Timothy C. Lieuwen and published by Cambridge University Press. This book was released on 2013-07-08 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of clean, sustainable energy systems is a preeminent issue in our time. Gas turbines will continue to be important combustion-based energy conversion devices for many decades to come, used for aircraft propulsion, ground-based power generation, and mechanical-drive applications. This book compiles the key scientific and technological knowledge associated with gas turbine emissions into a single authoritative source.