LangChain for RAG Beginners - Build Your First Powerful AI GPT Agent

Download LangChain for RAG Beginners - Build Your First Powerful AI GPT Agent PDF Online Free

Author :
Publisher : Karel Hernandez Rodriguez
ISBN 13 :
Total Pages : 332 pages
Book Rating : 4.3/5 (322 download)

DOWNLOAD NOW!


Book Synopsis LangChain for RAG Beginners - Build Your First Powerful AI GPT Agent by : Karel Hernandez Rodriguez

Download or read book LangChain for RAG Beginners - Build Your First Powerful AI GPT Agent written by Karel Hernandez Rodriguez and published by Karel Hernandez Rodriguez. This book was released on 2024-08-14 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dive into the world of advanced AI with "Python LangChain for RAG Beginners" ✔ Learn how to code Agentic RAG Powered Chatbot Systems. ✔ Empower your Agents with Tools ✔ Learn how to Create your Own Agents This comprehensive guide takes you on a journey through LangChain, an innovative framework designed to harness the power of Generative Pre-trained Transformers (GPTs) and other large language models (LLMs) for creating sophisticated AI-driven applications. Starting from the basics, this book provides a detailed understanding of how to effectively use LangChain to build, customize, and deploy AI applications that can think, learn, and interact seamlessly. You will explore the core concepts of LangChain, including prompt engineering, memory management, and Retrieval Augmented Generation (RAG). Each chapter is packed with practical examples and code snippets that demonstrate real-world applications and use cases. Key highlights include: Getting Started with LangChain: Learn the foundational principles and set up your environment. Advanced Prompt Engineering: Craft effective prompts to enhance AI interactions. Memory Management: Implement various memory types to maintain context and continuity in conversations. Retrieval Augmented Generation (RAG): Integrate external knowledge bases to expand your AI's capabilities. Building Intelligent Agents: Create agents that can autonomously perform tasks and make decisions. Practical Use Cases: Explore building a chat agent with web UI that allows you chatting with documents, web retrieval, vector databases for long term memory and much more ! Whether you are an AI enthusiast, a developer looking to integrate AI into your projects, or a professional aiming to stay ahead in the AI-driven world, " Python LangChain for RAG Beginners" provides the tools and knowledge to elevate your AI skills. Embrace the future of AI and transform your ideas into powerful, intelligent applications with LangChain.

Probabilistic Machine Learning

Download Probabilistic Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262369303
Total Pages : 858 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Machine Learning by : Kevin P. Murphy

Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Artificial Intelligence in Finance

Download Artificial Intelligence in Finance PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492055387
Total Pages : 478 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Finance by : Yves Hilpisch

Download or read book Artificial Intelligence in Finance written by Yves Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2020-10-14 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Building Machine Learning Pipelines

Download Building Machine Learning Pipelines PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492053147
Total Pages : 358 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Building Machine Learning Pipelines by : Hannes Hapke

Download or read book Building Machine Learning Pipelines written by Hannes Hapke and published by "O'Reilly Media, Inc.". This book was released on 2020-07-13 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques

The AI-Powered Workplace

Download The AI-Powered Workplace PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484254767
Total Pages : 178 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis The AI-Powered Workplace by : Ronald Ashri

Download or read book The AI-Powered Workplace written by Ronald Ashri and published by Apress. This book was released on 2019-12-09 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are entering the next wave of digital transformation. Artificial intelligence has an ever-increasing significance in our daily lives, and there is no difference when it comes to our workplaces. It is up to you to choose how to utilize these new tools to sharpen your organization’s competitive advantage, improve your team’s well-being, and help your business thrive. In The AI-Powered Workplace, author Ronald Ashri provides a map of the digital landscape to guide you on this timely journey. You’ll understand how the combination of AI, data, and conversational collaboration platforms—such as Slack, Microsoft Teams, and Facebook Workplace—is leading us to a radical shift in how we communicate and solve problems in the modern workplace. Our ability to automate decision-making processes through the application of AI techniques and through modern collaboration tools is a game-changer. Ashri skillfully presents his industry expertise and captivating insights so you have a thorough understanding of how to best combine these technologies with execution strategies that are optimized to your specific needs. The AI-Powered Workplace is an essential technical, cultural, and business handbook that arms you with clear steps to redefine and improve how you get work done. Software is now a proactive workplace partner revolutionizing all aspects of our professional lives from how we collaborate in the digital sphere to the literal physical environments in which we operate our business. This book not only ensures that you do not get left behind, but that you are consistently light years ahead of the pack. What You'll Learn Learn how the introduction of AI-powered applications in the workplace replaces or augments our capabilities and enables activities that were not possible beforeRealize how the combination of AI, data, and messaging platforms (Slack, Microsoft Teams, Skype, WhatsApp) leads to a radical shift in how we communicate, collaborate, and solve problemsDevelop strategies for the digital transformation of organizations through the use of AI-powered applications (from simple chatbots to more complex conversational applications) that operate within messaging environments we use to collaborate with our colleagues dailyKnow the dangers and ethical questions that the introduction of these technologies can cause in the workplace Who This Book is For Professionals at all levels interested in learning how AI, conversational platforms, and data can change organizations, including but not limited to team leaders, managers, and CxOs

Effective Data Storytelling

Download Effective Data Storytelling PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119615720
Total Pages : 338 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Effective Data Storytelling by : Brent Dykes

Download or read book Effective Data Storytelling written by Brent Dykes and published by John Wiley & Sons. This book was released on 2019-12-10 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the art and science of data storytelling—with frameworks and techniques to help you craft compelling stories with data. The ability to effectively communicate with data is no longer a luxury in today’s economy; it is a necessity. Transforming data into visual communication is only one part of the picture. It is equally important to engage your audience with a narrative—to tell a story with the numbers. Effective Data Storytelling will teach you the essential skills necessary to communicate your insights through persuasive and memorable data stories. Narratives are more powerful than raw statistics, more enduring than pretty charts. When done correctly, data stories can influence decisions and drive change. Most other books focus only on data visualization while neglecting the powerful narrative and psychological aspects of telling stories with data. Author Brent Dykes shows you how to take the three central elements of data storytelling—data, narrative, and visuals—and combine them for maximum effectiveness. Taking a comprehensive look at all the elements of data storytelling, this unique book will enable you to: Transform your insights and data visualizations into appealing, impactful data stories Learn the fundamental elements of a data story and key audience drivers Understand the differences between how the brain processes facts and narrative Structure your findings as a data narrative, using a four-step storyboarding process Incorporate the seven essential principles of better visual storytelling into your work Avoid common data storytelling mistakes by learning from historical and modern examples Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals is a must-have resource for anyone who communicates regularly with data, including business professionals, analysts, marketers, salespeople, financial managers, and educators.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Deep Learning Pipeline

Download Deep Learning Pipeline PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484253493
Total Pages : 563 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Pipeline by : Hisham El-Amir

Download or read book Deep Learning Pipeline written by Hisham El-Amir and published by Apress. This book was released on 2019-12-20 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects. You'll learn what a pipeline is and how it works so you can build a full application easily and rapidly. Then troubleshoot and overcome basic Tensorflow obstacles to easily create functional apps and deploy well-trained models. Step-by-step and example-oriented instructions help you understand each step of the deep learning pipeline while you apply the most straightforward and effective tools to demonstrative problems and datasets. You'll also develop a deep learning project by preparing data, choosing the model that fits that data, and debugging your model to get the best fit to data all using Tensorflow techniques. Enhance your skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution or entering a Kaggle contest, Deep Learning Pipeline is for you! What You'll LearnDevelop a deep learning project using dataStudy and apply various models to your dataDebug and troubleshoot the proper model suited for your data Who This Book Is For Developers, analysts, and data scientists looking to add to or enhance their existing skills by accessing some of the most powerful recent trends in data science. Prior experience in Python or other TensorFlow related languages and mathematics would be helpful.

The Master Algorithm

Download The Master Algorithm PDF Online Free

Author :
Publisher : Basic Books
ISBN 13 : 0465061923
Total Pages : 354 pages
Book Rating : 4.4/5 (65 download)

DOWNLOAD NOW!


Book Synopsis The Master Algorithm by : Pedro Domingos

Download or read book The Master Algorithm written by Pedro Domingos and published by Basic Books. This book was released on 2015-09-22 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.

Machine Learning Engineering

Download Machine Learning Engineering PDF Online Free

Author :
Publisher : True Positive Incorporated
ISBN 13 : 9781777005467
Total Pages : 302 pages
Book Rating : 4.0/5 (54 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Engineering by : Andriy Burkov

Download or read book Machine Learning Engineering written by Andriy Burkov and published by True Positive Incorporated. This book was released on 2020-09-08 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most comprehensive book on the engineering aspects of building reliable AI systems. "If you intend to use machine learning to solve business problems at scale, I'm delighted you got your hands on this book." -Cassie Kozyrkov, Chief Decision Scientist at Google "Foundational work about the reality of building machine learning models in production." -Karolis Urbonas, Head of Machine Learning and Science at Amazon

Learning SAP Analytics Cloud

Download Learning SAP Analytics Cloud PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788291840
Total Pages : 414 pages
Book Rating : 4.7/5 (882 download)

DOWNLOAD NOW!


Book Synopsis Learning SAP Analytics Cloud by : Riaz Ahmed

Download or read book Learning SAP Analytics Cloud written by Riaz Ahmed and published by Packt Publishing Ltd. This book was released on 2017-07-10 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Start making better business decisions backed by data About This Book Predict new opportunities and risks in a few mouse clicks Eliminate complexity with tools that let you plan, analyze, and collaborate in context—in real time Discover, visualize, plan, and predict in a single product with agile BI tools Who This Book Is For This book targets IT professionals, business analysts, BI developers, managers, newcomers to SAP Analytics Cloud, and ultimately anyone who wants to learn from self-paced, professional guidance and needs a solid foundation in SAP Analytics Cloud. What You Will Learn A clear understanding of SAP Analytics Cloud platform Create data models using different data sources, including Excel and text files . Present professional analyses using different types of charts, tables, geo maps, and more Using stories, drill up and down instantly to analyze data from various angles Share completed stories with other team members or compile them in SAP Digital Boardroom agendas for presentation to major stakeholders Export the results of a story to a PDF file Save time by planning, analyzing, predicting, and collaborating in context Discover, visualize, plan, and predict in one product as opposed to separate solutions In Detail The book starts with the basics of SAP Analytics Cloud (formerly known as SAP BusinessObjects Cloud) and exposes almost every significant feature a beginner needs to master. Packed with illustrations and short, essential, to-the-point descriptions, the book provides a unique learning experience. Your journey of exploration starts with a basic introduction to the SAP Analytics Cloud platform. You will then learn about different segments of the product, such as Models, Stories, Digital Boardroom, and so on. Then, you are introduced to the product's interface: the Home screen, the main menu, and more. Then comes the hands-on aspect of the book, which starts with model creation. Next, you learn how to utilize a model to prepare different types of stories(reports) with the help of charts, tables, Geo Maps, and more. In the final chapters of this book, you will learn about Digital Boardroom, Collaboration, and Administration. Style and approach The easy-to-follow visual instructions provided in this book help business users and report developers create simple and complex stories (reports) quickly

Artificial Intelligence By Example

Download Artificial Intelligence By Example PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839212810
Total Pages : 579 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence By Example by : Denis Rothman

Download or read book Artificial Intelligence By Example written by Denis Rothman and published by Packt Publishing Ltd. This book was released on 2020-02-28 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand the fundamentals and develop your own AI solutions in this updated edition packed with many new examples Key FeaturesAI-based examples to guide you in designing and implementing machine intelligenceBuild machine intelligence from scratch using artificial intelligence examplesDevelop machine intelligence from scratch using real artificial intelligenceBook Description AI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples. This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs). This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing. By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions. What you will learnApply k-nearest neighbors (KNN) to language translations and explore the opportunities in Google TranslateUnderstand chained algorithms combining unsupervised learning with decision treesSolve the XOR problem with feedforward neural networks (FNN) and build its architecture to represent a data flow graphLearn about meta learning models with hybrid neural networksCreate a chatbot and optimize its emotional intelligence deficiencies with tools such as Small Talk and data loggingBuilding conversational user interfaces (CUI) for chatbotsWriting genetic algorithms that optimize deep learning neural networksBuild quantum computing circuitsWho this book is for Developers and those interested in AI, who want to understand the fundamentals of Artificial Intelligence and implement them practically. Prior experience with Python programming and statistical knowledge is essential to make the most out of this book.

Learning Deep Architectures for AI

Download Learning Deep Architectures for AI PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601982941
Total Pages : 145 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Learning Deep Architectures for AI by : Yoshua Bengio

Download or read book Learning Deep Architectures for AI written by Yoshua Bengio and published by Now Publishers Inc. This book was released on 2009 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.

Graph Algorithms

Download Graph Algorithms PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492047635
Total Pages : 297 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Graph Algorithms by : Mark Needham

Download or read book Graph Algorithms written by Mark Needham and published by "O'Reilly Media, Inc.". This book was released on 2019-05-16 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark

Fundamentals of Deep Learning

Download Fundamentals of Deep Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491925566
Total Pages : 272 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Deep Learning by : Nikhil Buduma

Download or read book Fundamentals of Deep Learning written by Nikhil Buduma and published by "O'Reilly Media, Inc.". This book was released on 2017-05-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning

Search in Artificial Intelligence

Download Search in Artificial Intelligence PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461387884
Total Pages : 491 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Search in Artificial Intelligence by : Leveen Kanal

Download or read book Search in Artificial Intelligence written by Leveen Kanal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Search is an important component of problem solving in artificial intelligence (AI) and, more generally, in computer science, engineering and operations research. Combinatorial optimization, decision analysis, game playing, learning, planning, pattern recognition, robotics and theorem proving are some of the areas in which search algbrithms playa key role. Less than a decade ago the conventional wisdom in artificial intelligence was that the best search algorithms had already been invented and the likelihood of finding new results in this area was very small. Since then many new insights and results have been obtained. For example, new algorithms for state space, AND/OR graph, and game tree search were discovered. Articles on new theoretical developments and experimental results on backtracking, heuristic search and constraint propaga tion were published. The relationships among various search and combinatorial algorithms in AI, Operations Research, and other fields were clarified. This volume brings together some of this recent work in a manner designed to be accessible to students and professionals interested in these new insights and developments.