Kernel Mean Embedding of Distributions

Download Kernel Mean Embedding of Distributions PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680832891
Total Pages : 141 pages
Book Rating : 4.8/5 (328 download)

DOWNLOAD NOW!


Book Synopsis Kernel Mean Embedding of Distributions by : Krikamol Muandet

Download or read book Kernel Mean Embedding of Distributions written by Krikamol Muandet and published by . This book was released on 2017 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Hilbert space embedding of a distribution--in short, a kernel mean embedding--has recently emerged as a powerful tool for machine learning and statistical inference. The basic idea behind this framework is to map distributions into a reproducing kernel Hilbert space (RKHS) in which the whole arsenal of kernel methods can be extended to probability measures. It can be viewed as a generalization of the original "feature map" common to support vector machines (SVMs) and other kernel methods. In addition to the classical applications of kernel methods, the kernel mean embedding has found novel applications in fields ranging from probabilistic modeling to statistical inference, causal discovery, and deep learning. This survey aims to give a comprehensive review of existing work and recent advances in this research area, and to discuss challenging issues and open problems that could potentially lead to new research directions. The survey begins with a brief introduction to the RKHS and positive definite kernels which forms the backbone of this survey, followed by a thorough discussion of the Hilbert space embedding of marginal distributions, theoretical guarantees, and a review of its applications. The embedding of distributions enables us to apply RKHS methods to probability measures which prompts a wide range of applications such as kernel two-sample testing, independent testing, and learning on distributional data. Next, we discuss the Hilbert space embedding for conditional distributions, give theoretical insights, and review some applications. The conditional mean embedding enables us to perform sum, product, and Bayes' rules--which are ubiquitous in graphical model, probabilistic inference, and reinforcement learning-- in a non-parametric way using this new representation of distributions. We then discuss relationships between this framework and other related areas. Lastly, we give some suggestions on future research directions.

Kernel Mean Embedding of Distributions

Download Kernel Mean Embedding of Distributions PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680832884
Total Pages : 154 pages
Book Rating : 4.8/5 (328 download)

DOWNLOAD NOW!


Book Synopsis Kernel Mean Embedding of Distributions by : Krikamol Muandet

Download or read book Kernel Mean Embedding of Distributions written by Krikamol Muandet and published by . This book was released on 2017-06-28 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive review of kernel mean embeddings of distributions and, in the course of doing so, discusses some challenging issues that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics.

Algorithmic Learning Theory

Download Algorithmic Learning Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540752242
Total Pages : 415 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Algorithmic Learning Theory by : Marcus Hutter

Download or read book Algorithmic Learning Theory written by Marcus Hutter and published by Springer Science & Business Media. This book was released on 2007-09-17 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 18th International Conference on Algorithmic Learning Theory, ALT 2007, held in Sendai, Japan, October 1-4, 2007, co-located with the 10th International Conference on Discovery Science, DS 2007. The 25 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 50 submissions. They are dedicated to the theoretical foundations of machine learning.

Reproducing Kernel Hilbert Spaces in Probability and Statistics

Download Reproducing Kernel Hilbert Spaces in Probability and Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441990968
Total Pages : 369 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Reproducing Kernel Hilbert Spaces in Probability and Statistics by : Alain Berlinet

Download or read book Reproducing Kernel Hilbert Spaces in Probability and Statistics written by Alain Berlinet and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers theoretical questions including the latest extension of the formalism, and computational issues and focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, learning theory and some applications at the fringe between Statistics and Approximation Theory. It is geared to graduate students in Statistics, Mathematics or Engineering, or to scientists with an equivalent level.

Probabilistic Machine Learning

Download Probabilistic Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262376008
Total Pages : 1352 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Machine Learning by : Kevin P. Murphy

Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2023-08-15 with total page 1352 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty. An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning. Covers generation of high dimensional outputs, such as images, text, and graphs Discusses methods for discovering insights about data, based on latent variable models Considers training and testing under different distributions Explores how to use probabilistic models and inference for causal inference and decision making Features online Python code accompaniment

Gaussian Processes for Machine Learning

Download Gaussian Processes for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026218253X
Total Pages : 266 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen

Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Hyperspectral Image Analysis

Download Hyperspectral Image Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030386171
Total Pages : 464 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Hyperspectral Image Analysis by : Saurabh Prasad

Download or read book Hyperspectral Image Analysis written by Saurabh Prasad and published by Springer Nature. This book was released on 2020-04-27 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.

Advances in Dynamics, Optimization and Computation

Download Advances in Dynamics, Optimization and Computation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030512649
Total Pages : 402 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Advances in Dynamics, Optimization and Computation by : Oliver Junge

Download or read book Advances in Dynamics, Optimization and Computation written by Oliver Junge and published by Springer Nature. This book was released on 2020-07-20 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of papers on recent advances in problems concerning dynamics, optimal control and optimization. In many chapters, computational techniques play a central role. Set-oriented techniques feature prominently throughout the book, yielding state-of-the-art algorithms for computing general invariant sets, constructing globally optimal controllers and solving multi-objective optimization problems.

Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track

Download Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030676706
Total Pages : 608 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track by : Yuxiao Dong

Download or read book Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track written by Yuxiao Dong and published by Springer Nature. This book was released on 2021-02-24 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.

Foundations of Modern Statistics

Download Foundations of Modern Statistics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031301145
Total Pages : 603 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Modern Statistics by : Denis Belomestny

Download or read book Foundations of Modern Statistics written by Denis Belomestny and published by Springer Nature. This book was released on 2023-07-16 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains contributions from the participants of the international conference “Foundations of Modern Statistics” which took place at Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, during November 6–8, 2019, and at Higher School of Economics (HSE University), Moscow, during November 30, 2019. The events were organized in honor of Professor Vladimir Spokoiny on the occasion of his 60th birthday. Vladimir Spokoiny has pioneered the field of adaptive statistical inference and contributed to a variety of its applications. His more than 30 years of research in the field of mathematical statistics had a great influence on the development of the mathematical theory of statistics to its present state. It has inspired many young researchers to start their research in this exciting field of mathematics. The papers contained in this book reflect the broad field of interests of Vladimir Spokoiny: optimal rates and non-asymptotic bounds in nonparametrics, Bayes approaches from a frequentist point of view, optimization, signal processing, and statistical theory motivated by models in applied fields. Materials prepared by famous scientists contain original scientific results, which makes the publication valuable for researchers working in these fields. The book concludes by a conversation of Vladimir Spokoiny with Markus Reiβ and Enno Mammen. This interview gives some background on the life of Vladimir Spokoiny and his many scientific interests and motivations.

Cause Effect Pairs in Machine Learning

Download Cause Effect Pairs in Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030218104
Total Pages : 378 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Cause Effect Pairs in Machine Learning by : Isabelle Guyon

Download or read book Cause Effect Pairs in Machine Learning written by Isabelle Guyon and published by Springer Nature. This book was released on 2019-10-22 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (“Does altitude cause a change in atmospheric pressure, or vice versa?”) is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a “causal mechanism”, in the sense that the values of one variable may have been generated from the values of the other. This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website. Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.

Global Sensitivity Analysis

Download Global Sensitivity Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470725177
Total Pages : 304 pages
Book Rating : 4.7/5 (251 download)

DOWNLOAD NOW!


Book Synopsis Global Sensitivity Analysis by : Andrea Saltelli

Download or read book Global Sensitivity Analysis written by Andrea Saltelli and published by John Wiley & Sons. This book was released on 2008-02-28 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.

High-Dimensional Probability

Download High-Dimensional Probability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108415199
Total Pages : 299 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Probability by : Roman Vershynin

Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Graph Representation Learning

Download Graph Representation Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015886
Total Pages : 141 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Graph Representation Learning by : William L. William L. Hamilton

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Computational Topology for Data Analysis

Download Computational Topology for Data Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009103199
Total Pages : 456 pages
Book Rating : 4.0/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Computational Topology for Data Analysis by : Tamal Krishna Dey

Download or read book Computational Topology for Data Analysis written by Tamal Krishna Dey and published by Cambridge University Press. This book was released on 2022-03-10 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.

Causal Inference

Download Causal Inference PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819778123
Total Pages : 104 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Causal Inference by : Xiao-Hua Zhou

Download or read book Causal Inference written by Xiao-Hua Zhou and published by Springer Nature. This book was released on with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Kernel Methods in Computational Biology

Download Kernel Methods in Computational Biology PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262195096
Total Pages : 428 pages
Book Rating : 4.1/5 (95 download)

DOWNLOAD NOW!


Book Synopsis Kernel Methods in Computational Biology by : Bernhard Schölkopf

Download or read book Kernel Methods in Computational Biology written by Bernhard Schölkopf and published by MIT Press. This book was released on 2004 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed overview of current research in kernel methods and their application to computational biology.