Data Science with Julia

Download Data Science with Julia PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351013661
Total Pages : 220 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Data Science with Julia by : Paul D. McNicholas

Download or read book Data Science with Julia written by Paul D. McNicholas and published by CRC Press. This book was released on 2019-01-02 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist."- Professor Charles Bouveyron, INRIA Chair in Data Science, Université Côte d’Azur, Nice, France Julia, an open-source programming language, was created to be as easy to use as languages such as R and Python while also as fast as C and Fortran. An accessible, intuitive, and highly efficient base language with speed that exceeds R and Python, makes Julia a formidable language for data science. Using well known data science methods that will motivate the reader, Data Science with Julia will get readers up to speed on key features of the Julia language and illustrate its facilities for data science and machine learning work. Features: Covers the core components of Julia as well as packages relevant to the input, manipulation and representation of data. Discusses several important topics in data science including supervised and unsupervised learning. Reviews data visualization using the Gadfly package, which was designed to emulate the very popular ggplot2 package in R. Readers will learn how to make many common plots and how to visualize model results. Presents how to optimize Julia code for performance. Will be an ideal source for people who already know R and want to learn how to use Julia (though no previous knowledge of R or any other programming language is required). The advantages of Julia for data science cannot be understated. Besides speed and ease of use, there are already over 1,900 packages available and Julia can interface (either directly or through packages) with libraries written in R, Python, Matlab, C, C++ or Fortran. The book is for senior undergraduates, beginning graduate students, or practicing data scientists who want to learn how to use Julia for data science. "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist." Professor Charles Bouveyron INRIA Chair in Data Science Université Côte d’Azur, Nice, France

Julia for Data Science

Download Julia for Data Science PDF Online Free

Author :
Publisher :
ISBN 13 : 9781634621304
Total Pages : 0 pages
Book Rating : 4.6/5 (213 download)

DOWNLOAD NOW!


Book Synopsis Julia for Data Science by : Zacharias Voulgaris

Download or read book Julia for Data Science written by Zacharias Voulgaris and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: After covering the importance of Julia to the data science community and several essential data science principles, we start with the basics including how to install Julia and its powerful libraries. Many examples are provided as we illustrate how to leverage each Julia command, dataset, and function. Specialized script packages are introduced and described. Hands-on problems representative of those commonly encountered throughout the data science pipeline are provided, and we guide you in the use of Julia in solving them using published datasets. Many of these scenarios make use of existing packages and built-in functions, as we cover: An overview of the data science pipeline along with an example illustrating the key points, implemented in Julia Options for Julia IDEs Programming structures and functions Engineering tasks, such as importing, cleaning, formatting and storing data, as well as performing data preprocessing Data visualization and some simple yet powerful statistics for data exploration purposes Dimensionality reduction and feature evaluation Machine learning methods, ranging from unsupervised (different types of clustering) to supervised ones (decision trees, random forests, basic neural networks, regression trees, and Extreme Learning Machines) Graph analysis including pinpointing the connections among the various entities and how they can be mined for useful insights. Each chapter concludes with a series of questions and exercises to reinforce what you learned. The last chapter of the book will guide you in creating a data science application from scratch using Julia.

Think Julia

Download Think Julia PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492044989
Total Pages : 301 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Think Julia by : Ben Lauwens

Download or read book Think Julia written by Ben Lauwens and published by "O'Reilly Media, Inc.". This book was released on 2019-04-05 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re just learning how to program, Julia is an excellent JIT-compiled, dynamically typed language with a clean syntax. This hands-on guide uses Julia 1.0 to walk you through programming one step at a time, beginning with basic programming concepts before moving on to more advanced capabilities, such as creating new types and multiple dispatch. Designed from the beginning for high performance, Julia is a general-purpose language ideal for not only numerical analysis and computational science but also web programming and scripting. Through exercises in each chapter, you’ll try out programming concepts as you learn them. Think Julia is perfect for students at the high school or college level as well as self-learners and professionals who need to learn programming basics. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand types, methods, and multiple dispatch Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design and data structures through case studies

Julia for Machine Learning

Download Julia for Machine Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9781634628136
Total Pages : 298 pages
Book Rating : 4.6/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Julia for Machine Learning by : Zacharias Voulgaris

Download or read book Julia for Machine Learning written by Zacharias Voulgaris and published by . This book was released on 2020-05-18 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the power of Julia for your machine learning tasks. We reveal why Julia is chosen for more and more data science and machine learning projects, including Julia's ability to run algorithms at lightning speed. Next, we show you how to set up Julia and various IDEs such as Jupyter. Afterward, we explore key Julia libraries, which are useful for data science work, including packages related to visuals, data structures, and mathematical processes. After building a foundation in Julia, we dive into machine learning, with foundational concepts reinforced by Julia use cases. The use cases build upon each other, reaching the level where we code a machine learning model from scratch using Julia. All of these use cases are available in a series of Jupyter notebooks. After covering dimensionality reduction methods, we explore additional machine learning topics, such as parallelization and data engineering. Although knowing how to use Julia is essential, it is even more important to communicate our results to the business, which we cover next, including how to work efficiently with project stakeholders. Our Julia journey then ascends to the finer points, including improving machine learning transparency, reconciling machine learning with statistics, and continuing to innovate with Julia. The final chapters cover future trends in the areas of Julia, machine learning, and artificial intelligence. We explain machine learning and Bayesian Statistics hybrid systems, and Julia's Gen language. We share many resources so you can continue to sharpen your Julia and machine learning skills. Each chapter concludes with a series of questions designed to reinforce that chapter's material, with answers provided in an appendix. Other appendices include an extensive glossary, bridge packages between Julia and other programming languages, and an overview of three data science-related heuristics implemented in Julia, which aren't in any of the existing packages.

Julia Quick Syntax Reference

Download Julia Quick Syntax Reference PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484251903
Total Pages : 223 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Julia Quick Syntax Reference by : Antonello Lobianco

Download or read book Julia Quick Syntax Reference written by Antonello Lobianco and published by Apress. This book was released on 2019-11-11 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This quick Julia programming language guide is a condensed code and syntax reference to the Julia 1.x programming language, updated with the latest features of the Julia APIs, libraries, and packages. It presents the essential Julia syntax in a well-organized format that can be used as a handy reference. This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. You will learn how to use Julia packages for data analysis, numerical optimization and symbolic computation, and how to disseminate your results in dynamic documents or interactive web pages. In this book, the focus is on providing important information as quickly as possible. It is packed with useful information and is a must-have for any Julia programmer. What You Will Learn Set up the software needed to run Julia and your first Hello World exampleWork with types and the different containers that Julia makes available for rapid application developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions by looking at arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaInterface Julia with other languages such as C/C++, Python, and RProgram a richer API, modifying the code before it is executed using expressions, symbols, macros, quote blocks, and moreMaximize your code’s performance Who This Book Is For Experienced programmers new to Julia, as well as existing Julia coders new to the now stable Julia version 1.0 release.

Beginning Julia Programming

Download Beginning Julia Programming PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484231716
Total Pages : 359 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Beginning Julia Programming by : Sandeep Nagar

Download or read book Beginning Julia Programming written by Sandeep Nagar and published by Apress. This book was released on 2017-11-25 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with Julia for engineering and numerical computing, especially data science, machine learning, and scientific computing applications. This book explains how Julia provides the functionality, ease-of-use and intuitive syntax of R, Python, MATLAB, SAS, or Stata combined with the speed, capacity, and performance of C, C++, or Java. You’ll learn the OOP principles required to get you started, then how to do basic mathematics with Julia. Other core functionality of Julia that you’ll cover, includes working with complex numbers, rational and irrational numbers, rings, and fields. Beginning Julia Programming takes you beyond these basics to harness Julia’s powerful features for mathematical functions in Julia, arrays for matrix operations, plotting, and more. Along the way, you also learn how to manage strings, write functions, work with control flows, and carry out I/O to implement and leverage the mathematics needed for your data science and analysis projects. "Julia walks like Python and runs like C". This phrase explains why Julia is quickly growing as the most favored option for data analytics and numerical computation. After reading and using this book, you'll have the essential knowledge and skills to build your first Julia-based application. What You'll Learn Obtain core skills in Julia Apply Julia in engineering and science applications Work with mathematical functions in Julia Use arrays, strings, functions, control flow, and I/O in Julia Carry out plotting and display basic graphics Who This Book Is For Those who are new to Julia; experienced users may also find this helpful as a reference.

Democratizing Our Data

Download Democratizing Our Data PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262542749
Total Pages : 187 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Democratizing Our Data by : Julia Lane

Download or read book Democratizing Our Data written by Julia Lane and published by MIT Press. This book was released on 2021-10-19 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wake-up call for America to create a new framework for democratizing data. Public data are foundational to our democratic system. People need consistently high-quality information from trustworthy sources. In the new economy, wealth is generated by access to data; government's job is to democratize the data playing field. Yet data produced by the American government are getting worse and costing more. In Democratizing Our Data, Julia Lane argues that good data are essential for democracy. Her book is a wake-up call to America to fix its broken public data system.

Julia High Performance

Download Julia High Performance PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785887823
Total Pages : 132 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Julia High Performance by : Avik Sengupta

Download or read book Julia High Performance written by Avik Sengupta and published by Packt Publishing Ltd. This book was released on 2016-04-26 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and develop high performing programs with Julia About This Book Learn to code high reliability and high performance programs Stand out from the crowd by developing code that runs faster than your peers' codes This book is intended for developers who are interested in high performance technical programming. Who This Book Is For This book is for beginner and intermediate Julia programmers who are interested in high performance technical computing. You will have a basic familiarity with Julia syntax, and have written some small programs in the language. What You Will Learn Discover the secrets behind Julia's speed Get a sense of the possibilities and limitations of Julia's performance Analyze the performance of Julia programs Measure the time and memory taken by Julia programs Create fast machine code using Julia's type information Define and call functions without compromising Julia's performance Understand number types in Julia Use Julia arrays to write high performance code Get an overview of Julia's distributed computing capabilities In Detail Julia is a high performance, high-level dynamic language designed to address the requirements of high-level numerical and scientific computing. Julia brings solutions to the complexities faced by developers while developing elegant and high performing code. Julia High Performance will take you on a journey to understand the performance characteristics of your Julia programs, and enables you to utilize the promise of near C levels of performance in Julia. You will learn to analyze and measure the performance of Julia code, understand how to avoid bottlenecks, and design your program for the highest possible performance. In this book, you will also see how Julia uses type information to achieve its performance goals, and how to use multuple dispatch to help the compiler to emit high performance machine code. Numbers and their arrays are obviously the key structures in scientific computing – you will see how Julia's design makes them fast. The last chapter will give you a taste of Julia's distributed computing capabilities. Style and approach This is a hands-on manual that will give you good explanations about the important concepts related to Julia programming.

Julia Programming Projects

Download Julia Programming Projects PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788297253
Total Pages : 494 pages
Book Rating : 4.7/5 (882 download)

DOWNLOAD NOW!


Book Synopsis Julia Programming Projects by : Adrian Salceanu

Download or read book Julia Programming Projects written by Adrian Salceanu and published by Packt Publishing Ltd. This book was released on 2018-12-26 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step guide that demonstrates how to build simple-to-advanced applications through examples in Julia Lang 1.x using modern tools Key FeaturesWork with powerful open-source libraries for data wrangling, analysis, and visualizationDevelop full-featured, full-stack web applications Learn to perform supervised and unsupervised machine learning and time series analysis with JuliaBook Description Julia is a new programming language that offers a unique combination of performance and productivity. Its powerful features, friendly syntax, and speed are attracting a growing number of adopters from Python, R, and Matlab, effectively raising the bar for modern general and scientific computing. After six years in the making, Julia has reached version 1.0. Now is the perfect time to learn it, due to its large-scale adoption across a wide range of domains, including fintech, biotech, education, and AI. Beginning with an introduction to the language, Julia Programming Projects goes on to illustrate how to analyze the Iris dataset using DataFrames. You will explore functions and the type system, methods, and multiple dispatch while building a web scraper and a web app. Next, you'll delve into machine learning, where you'll build a books recommender system. You will also see how to apply unsupervised machine learning to perform clustering on the San Francisco business database. After metaprogramming, the final chapters will discuss dates and time, time series analysis, visualization, and forecasting. We'll close with package development, documenting, testing and benchmarking. By the end of the book, you will have gained the practical knowledge to build real-world applications in Julia. What you will learnLeverage Julia's strengths, its top packages, and main IDE optionsAnalyze and manipulate datasets using Julia and DataFramesWrite complex code while building real-life Julia applicationsDevelop and run a web app using Julia and the HTTP packageBuild a recommender system using supervised machine learning Perform exploratory data analysis Apply unsupervised machine learning algorithmsPerform time series data analysis, visualization, and forecastingWho this book is for Data scientists, statisticians, business analysts, and developers who are interested in learning how to use Julia to crunch numbers, analyze data and build apps will find this book useful. A basic knowledge of programming is assumed.

Introduction to Probability for Data Science

Download Introduction to Probability for Data Science PDF Online Free

Author :
Publisher : Michigan Publishing Services
ISBN 13 : 9781607857464
Total Pages : 0 pages
Book Rating : 4.8/5 (574 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Probability for Data Science by : Stanley H. Chan

Download or read book Introduction to Probability for Data Science written by Stanley H. Chan and published by Michigan Publishing Services. This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Probability is one of the most interesting subjects in electrical engineering and computer science. It bridges our favorite engineering principles to the practical reality, a world that is full of uncertainty. However, because probability is such a mature subject, the undergraduate textbooks alone might fill several rows of shelves in a library. When the literature is so rich, the challenge becomes how one can pierce through to the insight while diving into the details. For example, many of you have used a normal random variable before, but have you ever wondered where the 'bell shape' comes from? Every probability class will teach you about flipping a coin, but how can 'flipping a coin' ever be useful in machine learning today? Data scientists use the Poisson random variables to model the internet traffic, but where does the gorgeous Poisson equation come from? This book is designed to fill these gaps with knowledge that is essential to all data science students." -- Preface.

Learning Julia

Download Learning Julia PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785885367
Total Pages : 308 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Learning Julia by : Anshul Joshi

Download or read book Learning Julia written by Anshul Joshi and published by Packt Publishing Ltd. This book was released on 2017-11-24 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Julia language for data science and data analytics About This Book Set up Julia's environment and start building simple programs Explore the technical aspects of Julia and its potential when it comes to speed and data processing Write efficient and high-quality code in Julia Who This Book Is For This book allows existing programmers, statisticians and data scientists to learn the Julia and take its advantage while building applications with complex numerical and scientific computations. Basic knowledge of mathematics is needed to understand the various methods that will be used or created in the book to exploit the capabilities for which Julia is made. What You Will Learn Understand Julia's ecosystem and create simple programs Master the type system and create your own types in Julia Understand Julia's type system, annotations, and conversions Define functions and understand meta-programming and multiple dispatch Create graphics and data visualizations using Julia Build programs capable of networking and parallel computation Develop real-world applications and use connections for RDBMS and NoSQL Learn to interact with other programming languages–C and Python—using Julia In Detail Julia is a highly appropriate language for scientific computing, but it comes with all the required capabilities of a general-purpose language. It allows us to achieve C/Fortran-like performance while maintaining the concise syntax of a scripting language such as Python. It is perfect for building high-performance and concurrent applications. From the basics of its syntax to learning built-in object types, this book covers it all. This book shows you how to write effective functions, reduce code redundancies, and improve code reuse. It will be helpful for new programmers who are starting out with Julia to explore its wide and ever-growing package ecosystem and also for experienced developers/statisticians/data scientists who want to add Julia to their skill-set. The book presents the fundamentals of programming in Julia and in-depth informative examples, using a step-by-step approach. You will be taken through concepts and examples such as doing simple mathematical operations, creating loops, metaprogramming, functions, collections, multiple dispatch, and so on. By the end of the book, you will be able to apply your skills in Julia to create and explore applications of any domain. Style and approach This book demonstrates the basics of Julia along with some data structures and testing tools that will give you enough material to get started with the language from an application standpoint.

R for Data Science

Download R for Data Science PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491910364
Total Pages : 521 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis R for Data Science by : Hadley Wickham

Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Julia for Data Science

Download Julia for Data Science PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783553863
Total Pages : 339 pages
Book Rating : 4.7/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Julia for Data Science by : Anshul Joshi

Download or read book Julia for Data Science written by Anshul Joshi and published by Packt Publishing Ltd. This book was released on 2016-09-30 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the world of data science from scratch with Julia by your side About This Book An in-depth exploration of Julia's growing ecosystem of packages Work with the most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn about deep learning using Mocha.jl and give speed and high performance to data analysis on large data sets Who This Book Is For This book is aimed at data analysts and aspiring data scientists who have a basic knowledge of Julia or are completely new to it. The book also appeals to those competent in R and Python and wish to adopt Julia to improve their skills set in Data Science. It would be beneficial if the readers have a good background in statistics and computational mathematics. What You Will Learn Apply statistical models in Julia for data-driven decisions Understanding the process of data munging and data preparation using Julia Explore techniques to visualize data using Julia and D3 based packages Using Julia to create self-learning systems using cutting edge machine learning algorithms Create supervised and unsupervised machine learning systems using Julia. Also, explore ensemble models Build a recommendation engine in Julia Dive into Julia's deep learning framework and build a system using Mocha.jl In Detail Julia is a fast and high performing language that's perfectly suited to data science with a mature package ecosystem and is now feature complete. It is a good tool for a data science practitioner. There was a famous post at Harvard Business Review that Data Scientist is the sexiest job of the 21st century. (https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century). This book will help you get familiarised with Julia's rich ecosystem, which is continuously evolving, allowing you to stay on top of your game. This book contains the essentials of data science and gives a high-level overview of advanced statistics and techniques. You will dive in and will work on generating insights by performing inferential statistics, and will reveal hidden patterns and trends using data mining. This has the practical coverage of statistics and machine learning. You will develop knowledge to build statistical models and machine learning systems in Julia with attractive visualizations. You will then delve into the world of Deep learning in Julia and will understand the framework, Mocha.jl with which you can create artificial neural networks and implement deep learning. This book addresses the challenges of real-world data science problems, including data cleaning, data preparation, inferential statistics, statistical modeling, building high-performance machine learning systems and creating effective visualizations using Julia. Style and approach This practical and easy-to-follow yet comprehensive guide will get you learning about Julia with respect to data science. Each topic is explained thoroughly and placed in context. For the more inquisitive, we dive deeper into the language and its use case. This is the one true guide to working with Julia in data science.

Julia Cookbook

Download Julia Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785883631
Total Pages : 167 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Julia Cookbook by : Jalem Raj Rohit

Download or read book Julia Cookbook written by Jalem Raj Rohit and published by Packt Publishing Ltd. This book was released on 2016-09-30 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 40 recipes to get you up and running with programming using Julia About This Book Follow a practical approach to learn Julia programming the easy way Get an extensive coverage of Julia's packages for statistical analysis This recipe-based approach will help you get familiar with the key concepts in Juli Who This Book Is For This book is for data scientists and data analysts who are familiar with the basics of the Julia language. Prior experience of working with high-level languages such as MATLAB, Python, R, or Ruby is expected. What You Will Learn Extract and handle your data with Julia Uncover the concepts of metaprogramming in Julia Conduct statistical analysis with StatsBase.jl and Distributions.jl Build your data science models Find out how to visualize your data with Gadfly Explore big data concepts in Julia In Detail Want to handle everything that Julia can throw at you and get the most of it every day? This practical guide to programming with Julia for performing numerical computation will make you more productive and able work with data more efficiently. The book starts with the main features of Julia to help you quickly refresh your knowledge of functions, modules, and arrays. We'll also show you how to utilize the Julia language to identify, retrieve, and transform data sets so you can perform data analysis and data manipulation. Later on, you'll see how to optimize data science programs with parallel computing and memory allocation. You'll get familiar with the concepts of package development and networking to solve numerical problems using the Julia platform. This book includes recipes on identifying and classifying data science problems, data modelling, data analysis, data manipulation, meta-programming, multidimensional arrays, and parallel computing. By the end of the book, you will acquire the skills to work more effectively with your data. Style and approach This book has a recipe-based approach to help you grasp the concepts of Julia programming.

Hacking- The art Of Exploitation

Download Hacking- The art Of Exploitation PDF Online Free

Author :
Publisher : oshean collins
ISBN 13 :
Total Pages : 214 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Hacking- The art Of Exploitation by : J. Erickson

Download or read book Hacking- The art Of Exploitation written by J. Erickson and published by oshean collins. This book was released on 2018-03-06 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces the spirit and theory of hacking as well as the science behind it all; it also provides some core techniques and tricks of hacking so you can think like a hacker, write your own hacks or thwart potential system attacks.

Julia Programming for Operations Research

Download Julia Programming for Operations Research PDF Online Free

Author :
Publisher : Changhyun Kwon
ISBN 13 : 1798205475
Total Pages : 262 pages
Book Rating : 4.7/5 (982 download)

DOWNLOAD NOW!


Book Synopsis Julia Programming for Operations Research by : Changhyun Kwon

Download or read book Julia Programming for Operations Research written by Changhyun Kwon and published by Changhyun Kwon. This book was released on 2019-03-03 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia

Supervised Machine Learning for Text Analysis in R

Download Supervised Machine Learning for Text Analysis in R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000461971
Total Pages : 402 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Supervised Machine Learning for Text Analysis in R by : Emil Hvitfeldt

Download or read book Supervised Machine Learning for Text Analysis in R written by Emil Hvitfeldt and published by CRC Press. This book was released on 2021-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.