Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Isolated Singularities In Partial Differential Inequalities
Download Isolated Singularities In Partial Differential Inequalities full books in PDF, epub, and Kindle. Read online Isolated Singularities In Partial Differential Inequalities ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Isolated Singularities in Partial Differential Inequalities by : Marius Ghergu
Download or read book Isolated Singularities in Partial Differential Inequalities written by Marius Ghergu and published by Cambridge University Press. This book was released on 2016-01-25 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the authors present some powerful methods for dealing with singularities in elliptic and parabolic partial differential inequalities. Here, the authors take the unique approach of investigating differential inequalities rather than equations, the reason being that the simplest way to study an equation is often to study a corresponding inequality; for example, using sub and superharmonic functions to study harmonic functions. Another unusual feature of the present book is that it is based on integral representation formulae and nonlinear potentials, which have not been widely investigated so far. This approach can also be used to tackle higher order differential equations. The book will appeal to graduate students interested in analysis, researchers in pure and applied mathematics, and engineers who work with partial differential equations. Readers will require only a basic knowledge of functional analysis, measure theory and Sobolev spaces.
Book Synopsis Partial Differential Inequalities with Nonlinear Convolution Terms by : Marius Ghergu
Download or read book Partial Differential Inequalities with Nonlinear Convolution Terms written by Marius Ghergu and published by Springer Nature. This book was released on 2023-01-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief research monograph uses modern mathematical methods to investigate partial differential equations with nonlinear convolution terms, enabling readers to understand the concept of a solution and its asymptotic behavior. In their full generality, these inequalities display a non-local structure. Classical methods, such as maximum principle or sub- and super-solution methods, do not apply to this context. This work discusses partial differential inequalities (instead of differential equations) for which there is no variational setting. This current work brings forward other methods that prove to be useful in understanding the concept of a solution and its asymptotic behavior related to partial differential inequalities with nonlinear convolution terms. It promotes and illustrates the use of a priori estimates, Harnack inequalities, and integral representation of solutions. One of the first monographs on this rapidly expanding field, the present work appeals to graduate and postgraduate students as well as to researchers in the field of partial differential equations and nonlinear analysis.
Book Synopsis Isolated Singularities in Partial Differential Inequalities by : Marius Ghergu
Download or read book Isolated Singularities in Partial Differential Inequalities written by Marius Ghergu and published by . This book was released on 2016 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the authors present some powerful methods for dealing with singularities in elliptic and parabolic partial differential inequalities. Here, the authors take the unique approach of investigating differential inequalities rather than equations, the reason being that the simplest way to study an equation is often to study a corresponding inequality; for example, using sub and superharmonic functions to study harmonic functions. Another unusual feature of the present book is that it is based on integral representation formulae and nonlinear potentials, which have not been widely investigated so far. This approach can also be used to tackle higher order differential equations. The book will appeal to graduate students interested in analysis, researchers in pure and applied mathematics, and engineers who work with partial differential equations. Readers will require only a basic knowledge of functional analysis, measure theory and Sobolev spaces.
Book Synopsis Superlinear Parabolic Problems by : Prof. Dr. Pavol Quittner
Download or read book Superlinear Parabolic Problems written by Prof. Dr. Pavol Quittner and published by Springer. This book was released on 2019-06-13 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The first two chapters introduce to the field and enable the reader to get acquainted with the main ideas by studying simple model problems, respectively of elliptic and parabolic type. The subsequent three chapters are devoted to problems with more complex structure; namely, elliptic and parabolic systems, equations with gradient depending nonlinearities, and nonlocal equations. They include many developments which reflect several aspects of current research. Although the techniques introduced in the first two chapters provide efficient tools to attack some aspects of these problems, they often display new phenomena and specifically different behaviors, whose study requires new ideas. Many open problems are mentioned and commented. The book is self-contained and up-to-date, it has a high didactic quality. It is devoted to problems that are intensively studied but have not been treated so far in depth in the book literature. The intended audience includes graduate and postgraduate students and researchers working in the field of partial differential equations and applied mathematics. The first edition of this book has become one of the standard references in the field. This second edition provides a revised text and contains a number of updates reflecting significant recent advances that have appeared in this growing field since the first edition.
Book Synopsis Partial Differential Equations and Functional Analysis by : Erik Koelink
Download or read book Partial Differential Equations and Functional Analysis written by Erik Koelink and published by Springer Science & Business Media. This book was released on 2006-08-18 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Capturing the state of the art of the interplay between partial differential equations, functional analysis, maximal regularity, and probability theory, this volume was initiated at the Delft conference on the occasion of the retirement of Philippe Clément. It will be of interest to researchers in PDEs and functional analysis.
Book Synopsis Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs by : Emanuel Indrei
Download or read book Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs written by Emanuel Indrei and published by American Mathematical Society. This book was released on 2023-01-09 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the virtual conference on Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs, held from February 28–March 1, 2021, and hosted by Purdue University, West Lafayette, IN. The mathematical content of this volume is at the intersection of viscosity theory, Fourier analysis, mass transport theory, fractional elliptic theory, and geometric analysis. The reader will encounter, among others, the following topics: the principal-agent problem; Maxwell's equations; Liouville-type theorems for fully nonlinear elliptic equations; a doubly monotone flow for constant width bodies; and the edge dislocations problem for crystals that describes the equilibrium configurations by a nonlocal fractional Laplacian equation.
Book Synopsis Higher Special Functions by : Wolfgang Lay
Download or read book Higher Special Functions written by Wolfgang Lay and published by Cambridge University Press. This book was released on 2024-05-23 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher special functions emerge from boundary eigenvalue problems of Fuchsian differential equations with more than three singularities. This detailed reference provides solutions for singular boundary eigenvalue problems of linear ordinary differential equations of second order, exploring previously unknown methods for finding higher special functions. Starting from the fact that it is the singularities of a differential equation that determine the local, as well as the global, behaviour of its solutions, the author develops methods that are both new and efficient and lead to functional relationships that were previously unknown. All the developments discussed are placed within their historical context, allowing the reader to trace the roots of the theory back through the work of many generations of great mathematicians. Particular attention is given to the work of George Cecil Jaffé, who laid the foundation with the calculation of the quantum mechanical energy levels of the hydrogen molecule ion.
Download or read book Nonlinear PDEs written by Marius Ghergu and published by Springer Science & Business Media. This book was released on 2011-10-21 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
Book Synopsis Asymptotic Analysis of Random Walks: Light-Tailed Distributions by : A. A. Borovkov
Download or read book Asymptotic Analysis of Random Walks: Light-Tailed Distributions written by A. A. Borovkov and published by Cambridge University Press. This book was released on 2020-10-29 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic modern treatise on large deviation theory for random walks with light tails, from one of its key creators.
Book Synopsis Asymptotic Analysis of Random Walks by : A. A. Borovkov
Download or read book Asymptotic Analysis of Random Walks written by A. A. Borovkov and published by Cambridge University Press. This book was released on 2020-10-29 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.
Book Synopsis Equivalents of the Riemann Hypothesis by : Kevin Broughan
Download or read book Equivalents of the Riemann Hypothesis written by Kevin Broughan and published by Cambridge University Press. This book was released on 2023-09-30 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third volume presents further equivalents to the Riemann hypothesis and explores its decidability.
Book Synopsis Equivalents of the Riemann Hypothesis: Volume 3, Further Steps towards Resolving the Riemann Hypothesis by : Kevin Broughan
Download or read book Equivalents of the Riemann Hypothesis: Volume 3, Further Steps towards Resolving the Riemann Hypothesis written by Kevin Broughan and published by Cambridge University Press. This book was released on 2023-09-30 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume work presents the main known equivalents to the Riemann hypothesis, perhaps the most important problem in mathematics. Volume 3 covers new arithmetic and analytic equivalences from numerous studies in the field, such as Rogers and Tao, and presents derivations which show whether the Riemann hypothesis is decidable.
Book Synopsis Coxeter Bialgebras by : Marcelo Aguiar
Download or read book Coxeter Bialgebras written by Marcelo Aguiar and published by Cambridge University Press. This book was released on 2022-10-31 with total page 897 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this monograph is to develop Hopf theory in the setting of a real reflection arrangement. The central notion is that of a Coxeter bialgebra which generalizes the classical notion of a connected graded Hopf algebra. The authors also introduce the more structured notion of a Coxeter bimonoid and connect the two notions via a family of functors called Fock functors. These generalize similar functors connecting Hopf monoids in the category of Joyal species and connected graded Hopf algebras. This monograph opens a new chapter in Coxeter theory as well as in Hopf theory, connecting the two. It also relates fruitfully to many other areas of mathematics such as discrete geometry, semigroup theory, associative algebras, algebraic Lie theory, operads, and category theory. It is carefully written, with effective use of tables, diagrams, pictures, and summaries. It will be of interest to students and researchers alike.
Book Synopsis Strongly Regular Graphs by : Andries E. Brouwer
Download or read book Strongly Regular Graphs written by Andries E. Brouwer and published by . This book was released on 2022-01-13 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph on strongly regular graphs is an invaluable reference for anybody working in algebraic combinatorics.
Book Synopsis Linear State/Signal Systems by : Damir Z. Arov
Download or read book Linear State/Signal Systems written by Damir Z. Arov and published by Cambridge University Press. This book was released on 2022-05-26 with total page 1050 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors explain in this work a new approach to observing and controlling linear systems whose inputs and outputs are not fixed in advance. They cover a class of linear time-invariant state/signal system that is general enough to include most of the standard classes of linear time-invariant dynamical systems, but simple enough that it is easy to understand the fundamental principles. They begin by explaining the basic theory of finite-dimensional and bounded systems in a way suitable for graduate courses in systems theory and control. They then proceed to the more advanced infinite-dimensional setting, opening up new ways for researchers to study distributed parameter systems, including linear port-Hamiltonian systems and boundary triplets. They include the general non-passive part of the theory in continuous and discrete time, and provide a short introduction to the passive situation. Numerous examples from circuit theory are used to illustrate the theory.
Book Synopsis Handbook of Constructive Mathematics by : Douglas Bridges
Download or read book Handbook of Constructive Mathematics written by Douglas Bridges and published by Cambridge University Press. This book was released on 2023-03-31 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constructive mathematics – mathematics in which 'there exists' always means 'we can construct' – is enjoying a renaissance. fifty years on from Bishop's groundbreaking account of constructive analysis, constructive mathematics has spread out to touch almost all areas of mathematics and to have profound influence in theoretical computer science. This handbook gives the most complete overview of modern constructive mathematics, with contributions from leading specialists surveying the subject's myriad aspects. Major themes include: constructive algebra and geometry, constructive analysis, constructive topology, constructive logic and foundations of mathematics, and computational aspects of constructive mathematics. A series of introductory chapters provides graduate students and other newcomers to the subject with foundations for the surveys that follow. Edited by four of the most eminent experts in the field, this is an indispensable reference for constructive mathematicians and a fascinating vista of modern constructivism for the increasing number of researchers interested in constructive approaches.
Book Synopsis Compound Renewal Processes by : A. A. Borovkov
Download or read book Compound Renewal Processes written by A. A. Borovkov and published by Cambridge University Press. This book was released on 2022-06-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Compound renewal processes (CRPs) are among the most ubiquitous models arising in applications of probability. At the same time, they are a natural generalization of random walks, the most well-studied classical objects in probability theory. This monograph, written for researchers and graduate students, presents the general asymptotic theory and generalizes many well-known results concerning random walks. The book contains the key limit theorems for CRPs, functional limit theorems, integro-local limit theorems, large and moderately large deviation principles for CRPs in the state space and in the space of trajectories, including large deviation principles in boundary crossing problems for CRPs, with an explicit form of the rate functionals, and an extension of the invariance principle for CRPs to the domain of moderately large and small deviations. Applications establish the key limit laws for Markov additive processes, including limit theorems in the domains of normal and large deviations.