Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test

Download Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test by : Fivman Marpaung

Download or read book Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test written by Fivman Marpaung and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant into the fracture. However, these same viscous fluids need to break to a thin fluid after the treatment is over so that the fracture fluid can be cleaned up. In shallower, lower temperature (less than 250°F) reservoirs, the choice of a fracture fluid is very critical to the success of the treatment. Current hydraulic fracturing methods in unconventional tight gas reservoirs have been developed largely through ad-hoc application of low-cost water fracs, with little optimization of the process. It seems clear that some of the standard tests and models are missing some of the physics of the fracturing process in low-permeability environments. A series of the extensive laboratory "dynamic fracture conductivity" tests have been conducted. Dynamic fracture conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. Test results indicate that increasing gel concentration decreases retained fracture conductivity for a constant gas flow rate and decreasing gas flow rate decreases retained fracture conductivity. Without breaker, the damaging effect of viscous hydraulic fracturing fluids on the conductivity of proppant packs is significant at temperature of 150°F. Static conductivity testing results in higher retained fracture conductivity when compared to dynamic conductivity testing.

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test

Download Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test by : Jose Domingo Romero Lugo

Download or read book Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test written by Jose Domingo Romero Lugo and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process is to increase the conductivity of the reservoir by the creation of fractures deep into the formation, changing the flow pattern from radial to linear flow. The dynamic conductivity test was used for this research to evaluate the effect of closure stress, temperature, proppant concentration, and flow back rates on fracture conductivity. The objective of performing a dynamic conductivity test is to be able to mimic actual field conditions by pumping fracturing fluid/proppant slurry fluid into a conductivity cell, and applying closure stress afterwards. In addition, a factorial design was implemented in order to determine the main effect of each of the investigated factors and to minimize the number of experimental runs. Due to the stochastic nature of the dynamic conductivity test, each experiment was repeated several times to evaluate the consistency of the results. Experimental results indicate that the increase in closure stress has a detrimental effect on fracture conductivity. This effect can be attributed to the reduction in fracture width as closure stress was increased. Moreover, the formation of channels at low proppant concentration plays a significant role in determining the final conductivity of a fracture. The presence of these channels created an additional flow path for nitrogen, resulting in a significant increase in the conductivity of the fracture. In addition, experiments performed at high temperatures and stresses exhibited a reduction in fracture conductivity. The formation of a polymer cake due to unbroken gel dried up at high temperatures further impeded the propped conductivity. The effect of nitrogen rate was observed to be inversely proportional to fracture conductivity. The significant reduction in fracture conductivity could possibly be due to the effect of polymer dehydration at higher flow rates and temperatures. However, there is no certainty from experimental results that this conductivity reduction is an effect that occurs in real fractures or whether it is an effect that is only significant in laboratory conditions. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148364

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test

Download Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (747 download)

DOWNLOAD NOW!


Book Synopsis Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test by : Juan Correa Castro

Download or read book Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test written by Juan Correa Castro and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Unconventional gas has become an important resource to help meet our future energy demands. Although plentiful, it is difficult to produce this resource, when locked in a massive sedimentary formation. Among all unconventional gas resources, tight gas sands represent a big fraction and are often characterized by very low porosity and permeability associated with their producing formations, resulting in extremely low production rate. The low flow properties and the recovery factors of these sands make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a hydraulic fracture is to create a long, highly conductive fracture to facilitate the gas flow from the reservoir to the wellbore to obtain commercial production rates. Fracture conductivity depends on several factors, such as like the damage created by the gel during the treatment and the gel clean-up after the treatment. This research is focused on predicting more accurately the fracture conductivity, the gel damage created in fractures, and the fracture cleanup after a hydraulic fracture treatment under certain pressure and temperature conditions. Parameters that alter fracture conductivity, such as polymer concentration, breaker concentration and gas flow rate, are also examined in this study. A series of experiments, using a procedure of "dynamical fracture conductivity test," were carried out. This procedure simulates the proppant/frac fluid slurries flow into the fractures in a low-permeability rock, as it occurs in the field, using different combinations of polymer and breaker concentrations under reservoirs conditions. The result of this study provides the basis to optimize the fracturing fluids and the polymer loading at different reservoir conditions, which may result in a clean and conductive fracture. Success in improving this process will help to decrease capital expenditures and increase the production in unconventional tight gas reservoirs.

Development, Setup and Testing of a Dynamic Hydraulic Fracture Conductivity Apparatus

Download Development, Setup and Testing of a Dynamic Hydraulic Fracture Conductivity Apparatus PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Development, Setup and Testing of a Dynamic Hydraulic Fracture Conductivity Apparatus by : Potcharaporn Pongthunya

Download or read book Development, Setup and Testing of a Dynamic Hydraulic Fracture Conductivity Apparatus written by Potcharaporn Pongthunya and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most critical parameters in the success of a hydraulic fracturing treatment is to have sufficiently high fracture conductivity. Unbroken polymers can cause permeability impairment in the proppant pack and/or in the matrix along the fracture face. The objectives of this research project were to design and set up an experimental apparatus for dynamic fracture conductivity testing and to create a fracture conductivity test workflow standard. This entirely new dynamic fracture conductivity measurement will be used to perform extensive experiments to study fracturing fluid cleanup characteristics and investigate damage resulting from unbroken polymer gel in the proppant pack. The dynamic fracture conductivity experiment comprises two parts: pumping fracturing fluid into the cell and measuring proppant pack conductivity. I carefully designed the hydraulic fracturing laboratory to provide appropriate scaling of the field conditions experimentally. The specifications for each apparatus were carefully considered with flexibility for further studies and the capability of each apparatus was defined. I generated comprehensive experimental procedures for each experiment stage. By following the procedure, the experiment can run smoothly. Most of dry runs and experiments performed with sandstone were successful.

Fossil Energy Update

Download Fossil Energy Update PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 952 pages
Book Rating : 4.:/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Fossil Energy Update by :

Download or read book Fossil Energy Update written by and published by . This book was released on 1986 with total page 952 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Proceedings ... SPE Annual Technical Conference and Exhibition

Download Proceedings ... SPE Annual Technical Conference and Exhibition PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 828 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Proceedings ... SPE Annual Technical Conference and Exhibition by : Society of Petroleum Engineers (U.S.). Technical Conference and Exhibition

Download or read book Proceedings ... SPE Annual Technical Conference and Exhibition written by Society of Petroleum Engineers (U.S.). Technical Conference and Exhibition and published by . This book was released on 1997 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Advances in Fluid-Solid Coupling Processes between Fractures and Porous Rocks: Experimental and Numerical Investigation

Download Advances in Fluid-Solid Coupling Processes between Fractures and Porous Rocks: Experimental and Numerical Investigation PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832541658
Total Pages : 122 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Advances in Fluid-Solid Coupling Processes between Fractures and Porous Rocks: Experimental and Numerical Investigation by : Shiming Wei

Download or read book Advances in Fluid-Solid Coupling Processes between Fractures and Porous Rocks: Experimental and Numerical Investigation written by Shiming Wei and published by Frontiers Media SA. This book was released on with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is the key measure for improving recovery of unconventional oil and gas reservoirs. Prediction of fracture morphology and productivity after fracturing is critical for fracturing design and optimization. The hydraulic fracturing process is to open porous rocks by artificially injecting highly compressed fluid, and the hydraulic fracture will be closed under the compaction of in-situ stress during the production process. In this regard, hydraulic fracturing and production processes are both fluid-solid coupling processes involving fractures and porous rocks. This Research Topic aims to gather the latest studies addressing how to improve the prediction accuracy of hydraulic fracturing morphology and post-fracturing productivity through experimental and numerical investigation. The experimental research shall underline hydraulic fracturing and fracture conductivity experiments and associated experimental methods, while the numerical research shall pay particular attention to discrete fracture network models, including the calculation efficiency and accuracy as well as the applicability.

Meta-analysis of Hydraulic Fracture Conductivity Data

Download Meta-analysis of Hydraulic Fracture Conductivity Data PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 320 pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Meta-analysis of Hydraulic Fracture Conductivity Data by : Mohammed Rashnur Rahman

Download or read book Meta-analysis of Hydraulic Fracture Conductivity Data written by Mohammed Rashnur Rahman and published by . This book was released on 2017 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Previous empirical models of propped fracture conductivity are based either on data sourced from single investigations or on data not in the public domain. In this work, statistically rigorous models of propped fracture conductivity are developed using a database of fracture conductivity experiments reported in technical literature over the last 40 years. The database contains the results from about 2700 experimental runs. Propped fracture conductivity is the dependent variable and proppant types, mesh size, proppant concentration, formation hardness, closure stress, formation temperature, and polymer concentration are the independent variables. The mother database is partitioned into subsets; that is different databases with each daughter database having complete information in relation to the dependent and independent variables. As a result, the number of independent variables included in the daughter databases varied from three to six. Seventy percent of the data was used to develop the models while 30% of the data was used to validate them. First, fixed effect models were developed using regression analysis. Afterwards, three, four and five factor models were compared for two types of proppant: sand and ceramic proppant. The five factor model appeared to be the most prominent one. The analysis was further carried out using five factors of these two types of proppant. Mixed effect modeling was employed because of the disparate sources of the data and also the temporal diversity of the dataset. The mixed effect model appeared to be the better than the fixed effect model while compared the error terms. Also, because the mother database contained some missing values, two statistical imputation approaches were employed to predict the missing values which are categorical imputation and multiple imputation using chained equations. Imputations are employed because it is speculated that a model developed using a large number of data points should provide better predictions. Generally, the mean squared error (MSE) is less in the mixed effect model for sand and in the categorical imputation model for ceramic proppant. But, to be more precise on the performance of the models, model predictions were compared with an existing propped fracture conductivity model and different case histories published in literature. Subsequently, the models of this research can be arranged in order of predictive performance: multiple imputation model, mixed effect model, fixed effect/categorical imputation model. The results also indicate that mesh size, closure stress, formation hardness, and proppant concentration significantly affect fracture conductivity from a statistical point of view. Formation temperature and polymer concentration affect conductivity negatively but they were not statistically significant. Engineers will have access to a propped fracture conductivity database based on experiments reported over the past 40 years in technical literature. Engineers can use the models developed based on this database to generate statistical distributions of propped fracture conductivity for a variety of proppant characteristics and formation conditions. The models presented here are based on data from experimental investigations in different laboratories thereby reducing the bias that may be present in single laboratory investigations.

Petroleum Abstracts

Download Petroleum Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 360 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Petroleum Abstracts by :

Download or read book Petroleum Abstracts written by and published by . This book was released on 1997 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation

Download Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 90 pages
Book Rating : 4.:/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation by : Andrea Nino Penaloza

Download or read book Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation written by Andrea Nino Penaloza and published by . This book was released on 2013 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acid fracture conductivity and the effect of key variables in the etching process during acid fracturing can be assessed at the laboratory scale. This is accomplished by using an experimental apparatus that simulates acid injection fluxes comparable to those in actual acid fracture treatments. After acid etching, fracture conductivity is measured at different closure stresses. This research work presents a systematic study to investigate the effect of temperature, rock-acid contact time and initial condition of the fracture surfaces on acid fracture conductivity in the Austin Chalk formation. While temperature and rock-acid contact are variables normally studied in fracture conductivity tests, the effect of the initial condition of the fracture surface has not been extensively investigated. The experimental results showed that there is no significant difference in acid fracture conductivity at high closure stress using smooth or rough fracture surfaces. In addition, we analyzed the mechanisms of acid etching and resulting conductivity creation in the two types of fracture surfaces studied by using surface profiles. For smooth surfaces, the mechanism of conductivity creation seems connected to uneven etching of the rock and roughness generation. For rough surfaces, acid conductivity is related to smoothing and deepening of the initial features on the sample surface than by creating more roughness. Finally, we compared the experimental results with Nirode-Kruk correlation for acid fracture conductivity. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149578

The Effects of Fracture Orientation and Anisotropy on Hydraulic Fracture Conductivity in the Marcellus Shale

Download The Effects of Fracture Orientation and Anisotropy on Hydraulic Fracture Conductivity in the Marcellus Shale PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (942 download)

DOWNLOAD NOW!


Book Synopsis The Effects of Fracture Orientation and Anisotropy on Hydraulic Fracture Conductivity in the Marcellus Shale by : Mark John McGinley

Download or read book The Effects of Fracture Orientation and Anisotropy on Hydraulic Fracture Conductivity in the Marcellus Shale written by Mark John McGinley and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Production of hydrocarbons from low-permeability shale reservoirs has become economically feasible thanks in part to advances in horizontal drilling and hydraulic fracturing. Together, these two techniques help to create a network of highly-permeable fractures, which act as fluid conduits from the reservoir to the wellbore. The efficacy of a fracturing treatment can best be determined through fracture conductivity analysis. Fracture conductivity is defined as the product of fracture permeability and fracture width, and describes both how much and how easily fluid can flow through fractures. It is therefore directly related to well performance. The goal of this work is to explore fracture conductivity of Marcellus shale samples fractured in both horizontal and vertical orientations. The Marcellus shale, located primarily in Pennsylvania, Ohio, West Virginia, New York, and Maryland, is the largest gas-bearing shale formation in North America, and its development has significant implications on regional economies, the northeast United States' energy infrastructure, and the availability of petrochemical plant feedstock. In this work, a series of experiments was conducted to determine the propped fracture conductivity of 23 different samples from Elimsport and Allenwood, Pennsylvania. Before conductivity measurements were taken, the pedigree of samples was verified through XRD analysis, elastic rock properties were measured and compared against literature values, and fracture surface contours were mapped and measured. Fracture conductivity of both horizontally and vertically-fracture samples was determined by measuring the pressure drop of nitrogen gas through a modified API conductivity cell. Results show that fracture conductivity varies as a function of fracture orientation only when anisotropy of the rock's mechanical properties is pronounced. It is hypothesized that the anisotropy of Young's Modulus and Poisson's Ratio play a significant role in fracture mechanics, and therefore in the width of hydraulically-induced fractures. Ultimately, the experiments conducted as part of this work show that fracture conductivity trends are strongly tied to both proppant concentration and the rock's mechanical properties. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/155300

Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation

Download Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (131 download)

DOWNLOAD NOW!


Book Synopsis Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation by : Songyang Tong

Download or read book Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation written by Songyang Tong and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: During hydraulic fracturing treatments, proppants - usually sand - are placed inside fractures to improve fracture conductivity. However, a large portion of the generated hydraulic fractures often remain unpropped after fracturing treatments. There are two primary reasons for this poor proppant placement. First, proppants settle quickly in common fracturing fluids (e.g., slickwater), which results in unpropped sections at the tip or top of the fracture. Second, a large number of the microfractures are too narrow to accommodate any common commercial proppant. Such unpropped fractures hold a large potential flow capacity as they exhibit a large contact area with the reservoir. However, their potential flow capacity is diminished during production due to closing of unpropped fractures because of closure stress. In this study, fractures are categorized as wider fractures, which are accessible to proppant, and narrower fractures, which are inaccessible to proppant. For wider fractures, proppant transport is important as proppant is needed for keeping them open. For narrower fractures, a chemical formulation is proposed as there is less physical restriction for fluids to flow inside across them. The chemical formulation is expected to improve fracture conductivity by generating roughness on fracture surfaces. This dissertation uses experiments and simulations to investigate proppant transport in a complex fracture network with laboratory-scale transparent fracture slots. Proppant size, injection flow rate and bypass fracture angle are varied and their effects are systematically evaluated. Based on experimental results, a straight-line relationship can be used to quantify the fraction of proppant that flows into bypass fractures with the total amount of proppant injected. A Computational Fluid Dynamics (CFD) model is developed to simulate the experiments; both qualitative and quantitative matches are achieved with this model. It is concluded that the fraction of proppant which flows into bypass fractures could be small unless a significant amount of proppant is injected, which indicates the inefficiency of slickwater in transporting proppant. An alternative fracturing fluid - foam - has been proposed to improve proppant placement because of its proppant carrying capacity. Foam is not a single-phase fluid, and it suffers liquid drainage with time due to gravity. Additionally, the existence of foam bubbles and lamellae could alter the movement of proppants. Experiments and simulations are performed to evaluate proppant placement in field-scale foam fracturing application. A liquid drainage model and a proppant settling correlation are developed and incorporated into an in-housing fracturing simulator. Results indicate that liquid drainage could negatively affect proppant placement, while dry foams could lead to negligible proppant settling and consequently uniform proppant placement. For narrower fractures, two chemical stimulation techniques are proposed to improve fracture conductivity by increasing fracture surface roughness. The first is a nanoparticle-microencapsulated acid (MEA) system for shale acidizing applications, and the second is a new technology which can generate mineral crystals on the shale surface to act as in-situ proppants. The MEA could be released as the fracture closes and the released acid could etch the surface of the rock locally, in a non-uniform way, to improve fracture conductivity (up to 40 times). Furthermore, the in-situ proppant generation technology can lead to crystal growth in both fracking water and formation brine conditions, and it also improves fracture conductivity (up to 10 times) based on core flooding experiments

Characterization of Filter Cake Buildup and Cleanup Under Dynamic Fluid Loss Conditions

Download Characterization of Filter Cake Buildup and Cleanup Under Dynamic Fluid Loss Conditions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (761 download)

DOWNLOAD NOW!


Book Synopsis Characterization of Filter Cake Buildup and Cleanup Under Dynamic Fluid Loss Conditions by : Takwe Yango

Download or read book Characterization of Filter Cake Buildup and Cleanup Under Dynamic Fluid Loss Conditions written by Takwe Yango and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is a popular stimulation method in tight gas and shale gas reservoirs that uses a viscous fluid to fracture the reservoir rock and uniformly transport proppant to create a highly conductive path that is kept open by the proppant after fracturing. This method is used to improve the productivity of the otherwise low permeability reservoirs. Hydraulic fracturing, though in general beneficial, is a complex process that has a number of challenges in fracturing design and execution. This research focuses on studying the damage caused by the fracturing fluid (gel) to the fracture and the conditions to remove the damage. Guar gum and its derivatives have been the most commonly used polymers to increase the viscosity of fracturing fluids. The fracturing fluid gets dehydrated under pressure leaving behind a highly concentrated unbroken residue called filter cake which causes permeability impairment in the proppant pack, resulting in low fracture conductivity and decreased effective fracture length. This study seeks to characterize filter cakes. By measuring its thickness and with the leak off volume, the concentration and yield stress of the filter cake can be estimated. The thickness of the filter cake was measured with a precise laser profilometer. Correlations are proposed to estimate filter cake properties (thickness, concentration and yield stress) based on pumping conditions (pump rate, time and net pressure) and rock properties. With these properties known, a required flow back rate of the reservoir fluid can be estimated to clean up the filter cake modeled as a non-newtonian fluid exhibiting a yield stress. Typical field conditions were referenced and scaled down in the lab to closely represent the field conditions. Recommendations are provided on gel damage based on the observation of the study.

Experimental Study of the Effect of Stress and Fluid Sensitivity on Propped and Un-propped Fracture Conductivity in Preserved Reservoir Shale

Download Experimental Study of the Effect of Stress and Fluid Sensitivity on Propped and Un-propped Fracture Conductivity in Preserved Reservoir Shale PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 130 pages
Book Rating : 4.:/5 (953 download)

DOWNLOAD NOW!


Book Synopsis Experimental Study of the Effect of Stress and Fluid Sensitivity on Propped and Un-propped Fracture Conductivity in Preserved Reservoir Shale by : Pratik Kakkar

Download or read book Experimental Study of the Effect of Stress and Fluid Sensitivity on Propped and Un-propped Fracture Conductivity in Preserved Reservoir Shale written by Pratik Kakkar and published by . This book was released on 2016 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: A good amount of work has been done on analyzing the effect of stress and fluid sensitivity on fracture conductivity in sandstones. This thesis tries to answer similar questions with regard to shale formations. Shales are very sensitive to aqueous fluids and their mechanical properties change when exposed to it. This mechanical property change in shale is mainly caused due to clay swelling. Some of the previous researchers working on shale fluid sensitivity failed to use preserved reservoir cores for their experiments and allowed them to dry out. This study has been conducted on preserved Utica and Eagle Ford core samples. Experiments were conducted to study the effect of effective stress on propped and un-propped fracture conductivity. These experiments were conducted at reservoir temperature and pressure conditions to mimic field conditions. Different fluids were flowed through the fracture to compare the effect of different fluids on fracture conductivity. To prevent clay swelling various clay stabilizers are used in the field during drilling and fracturing operations. Experiments were conducted to test the effectiveness of different clay stabilizers in preventing fracture conductivity reduction. Some of the clay stabilizers were more effective than others but all of them were unable to prevent fracture conductivity reduction when fracture was flowed with a high pH fluid.

The Influence of Vertical Location on Hydraulic Fracture Conductivity in the Fayetteville Shale

Download The Influence of Vertical Location on Hydraulic Fracture Conductivity in the Fayetteville Shale PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (92 download)

DOWNLOAD NOW!


Book Synopsis The Influence of Vertical Location on Hydraulic Fracture Conductivity in the Fayetteville Shale by : Kathryn Elizabeth Briggs

Download or read book The Influence of Vertical Location on Hydraulic Fracture Conductivity in the Fayetteville Shale written by Kathryn Elizabeth Briggs and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is the primary stimulation method within low permeability reservoirs, in particular shale reservoirs. Hydraulic fracturing provides a means for making shale reservoirs commercially viable by inducing and propping fracture networks allowing gas flow to the wellbore. Without a propping agent, the created fracture channels would close due to the in-situ stress and defeat the purpose of creating induced fractures. The fracture network conductivity is directly related to the well productivity; therefore, the oil and gas industry is currently trying to better understand what impacts fracture conductivity. Shale is a broad term for a fine-grained, detrital rock, composed of silts and clays, which often suggest laminar, fissile structure. This work investigates the difference between two vertical zones in the Fayetteville shale, the FL2 and FL3, by measuring laboratory fracture conductivity along an artificially induced, rough, aligned fracture. Unpropped and low concentration 30/70 mesh proppant experiments were run on samples from both zones. Parameters that were controllable, such as proppant size, concentration and type, were kept consistent between the two zones. In addition to comparing experimental fracture conductivity results, mineral composition, thin sections, and surface roughness scans were evaluated to distinguish differences between the two zones rock properties. To further identify differences between the two zones, 90-day production data was analyzed. The FL2 consistently recorded higher conductivity values than the FL3 at closure stress up to 3,000 psi. The mineral composition analysis of the FL2 and FL3 samples concluded that although the zones had similar clay content, the FL2 contained more quartz and the FL3 contained more carbonate. Additionally, the FL2 samples were less fissile and had larger surface fragments created along the fracture surface; whereas the FL3 samples had flaky, brittle surface fragments. The FL2 had higher conductivity values at closure stresses up to 3,000 psi due to the rearrangement of bulky surface fragments and larger void spaces created when fragments were removed from the fracture surface. The conductivity difference between the zones decreases by 25% when low concentration, 0.03 lb/ft2, 30/70 mesh proppant is placed evenly on the fracture surface. The conductivity difference decrease is less drastic, changing only 7%, when increase the proppant concentration to 0.1 lb/ft2 30/70 mesh proppant. In conclusion, size and brittleness of surface fracture particles significantly impacts the unpropped and low concentration fracture conductivity. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/152755

SPE Reprint Series

Download SPE Reprint Series PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 444 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis SPE Reprint Series by :

Download or read book SPE Reprint Series written by and published by . This book was released on 1990 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Experimental Investigation of Propped Fracture Conductivity

Download Experimental Investigation of Propped Fracture Conductivity PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 236 pages
Book Rating : 4.:/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Propped Fracture Conductivity by : Abhinav Mittal

Download or read book Experimental Investigation of Propped Fracture Conductivity written by Abhinav Mittal and published by . This book was released on 2018 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: