Inverse Spectral Theory

Download Inverse Spectral Theory PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080874495
Total Pages : 209 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Inverse Spectral Theory by : Jurgen Poschel

Download or read book Inverse Spectral Theory written by Jurgen Poschel and published by Academic Press. This book was released on 1987-03-16 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse Spectral Theory

Inverse Spectral and Scattering Theory

Download Inverse Spectral and Scattering Theory PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811581991
Total Pages : 130 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Inverse Spectral and Scattering Theory by : Hiroshi Isozaki

Download or read book Inverse Spectral and Scattering Theory written by Hiroshi Isozaki and published by Springer Nature. This book was released on 2020-09-26 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide basic knowledge of the inverse problems arising in various areas in mathematics, physics, engineering, and medical science. These practical problems boil down to the mathematical question in which one tries to recover the operator (coefficients) or the domain (manifolds) from spectral data. The characteristic properties of the operators in question are often reduced to those of Schrödinger operators. We start from the 1-dimensional theory to observe the main features of inverse spectral problems and then proceed to multi-dimensions. The first milestone is the Borg–Levinson theorem in the inverse Dirichlet problem in a bounded domain elucidating basic motivation of the inverse problem as well as the difference between 1-dimension and multi-dimension. The main theme is the inverse scattering, in which the spectral data is Heisenberg’s S-matrix defined through the observation of the asymptotic behavior at infinity of solutions. Significant progress has been made in the past 30 years by using the Faddeev–Green function or the complex geometrical optics solution by Sylvester and Uhlmann, which made it possible to reconstruct the potential from the S-matrix of one fixed energy. One can also prove the equivalence of the knowledge of S-matrix and that of the Dirichlet-to-Neumann map for boundary value problems in bounded domains. We apply this idea also to the Dirac equation, the Maxwell equation, and discrete Schrödinger operators on perturbed lattices. Our final topic is the boundary control method introduced by Belishev and Kurylev, which is for the moment the only systematic method for the reconstruction of the Riemannian metric from the boundary observation, which we apply to the inverse scattering on non-compact manifolds. We stress that this book focuses on the lucid exposition of these problems and mathematical backgrounds by explaining the basic knowledge of functional analysis and spectral theory, omitting the technical details in order to make the book accessible to graduate students as an introduction to partial differential equations (PDEs) and functional analysis.

Spectral Theory of Canonical Systems

Download Spectral Theory of Canonical Systems PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110562286
Total Pages : 244 pages
Book Rating : 4.1/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory of Canonical Systems by : Christian Remling

Download or read book Spectral Theory of Canonical Systems written by Christian Remling and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-08-21 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schrödinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. ‘Spectral Theory of Canonical Systems’ offers a selfcontained and detailed introduction to this theory. Techniques to construct self-adjoint realizations in suitable Hilbert spaces, a modern treatment of de Branges spaces, and direct and inverse spectral problems are discussed. Contents Basic definitions Symmetric and self-adjoint relations Spectral representation Transfer matrices and de Branges spaces Inverse spectral theory Some applications The absolutely continuous spectrum

Gaussian Processes, Function Theory, and the Inverse Spectral Problem

Download Gaussian Processes, Function Theory, and the Inverse Spectral Problem PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048646279X
Total Pages : 354 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Processes, Function Theory, and the Inverse Spectral Problem by : Harry Dym

Download or read book Gaussian Processes, Function Theory, and the Inverse Spectral Problem written by Harry Dym and published by Courier Corporation. This book was released on 2008-01-01 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers background in function theory, Hardy functions, and probability as preparation for surveys of Gaussian processes, strings and spectral functions, and strings and spaces of integral functions. It addresses the relationship between the past and the future of a real, one-dimensional, stationary Gaussian process. 1976 edition.

An Introduction to Inverse Scattering and Inverse Spectral Problems

Download An Introduction to Inverse Scattering and Inverse Spectral Problems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898713870
Total Pages : 206 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Inverse Scattering and Inverse Spectral Problems by : Khosrow Chadan

Download or read book An Introduction to Inverse Scattering and Inverse Spectral Problems written by Khosrow Chadan and published by SIAM. This book was released on 1997-01-01 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a clearly written introduction to three central areas of inverse problems: inverse problems in electromagnetic scattering theory, inverse spectral theory, and inverse problems in quantum scattering theory. Inverse problems, one of the most attractive parts of applied mathematics, attempt to obtain information about structures by nondestructive measurements. Based on a series of lectures presented by three of the authors, all experts in the field, the book provides a quick and easy way for readers to become familiar with the area through a survey of recent developments in inverse spectral and inverse scattering problems.

Spectral Theory of Random Schrödinger Operators

Download Spectral Theory of Random Schrödinger Operators PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461244889
Total Pages : 611 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory of Random Schrödinger Operators by : R. Carmona

Download or read book Spectral Theory of Random Schrödinger Operators written by R. Carmona and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: • A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. • The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.

Spectral Theory of Infinite-Area Hyperbolic Surfaces

Download Spectral Theory of Infinite-Area Hyperbolic Surfaces PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319338773
Total Pages : 471 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory of Infinite-Area Hyperbolic Surfaces by : David Borthwick

Download or read book Spectral Theory of Infinite-Area Hyperbolic Surfaces written by David Borthwick and published by Birkhäuser. This book was released on 2016-07-12 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition: "The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)

Spectral Theory and Its Applications

Download Spectral Theory and Its Applications PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110703230X
Total Pages : 263 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory and Its Applications by : Bernard Helffer

Download or read book Spectral Theory and Its Applications written by Bernard Helffer and published by Cambridge University Press. This book was released on 2013-01-17 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the basic tools in spectral analysis using numerous examples from the Schrödinger operator theory and various branches of physics.

Spectral Theory & Computational Methods of Sturm-Liouville Problems

Download Spectral Theory & Computational Methods of Sturm-Liouville Problems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780824700300
Total Pages : 422 pages
Book Rating : 4.7/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory & Computational Methods of Sturm-Liouville Problems by : Don Hinton

Download or read book Spectral Theory & Computational Methods of Sturm-Liouville Problems written by Don Hinton and published by CRC Press. This book was released on 1997-05-06 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the proceedings of the conference on Sturm-Liouville problems held in conjunction with the 26th Barrett Memorial Lecture Series at the University of Tennessee, Knoxville, this text covers both qualitative and computational theory of Sturm-Liouville problems. It surveys questions in the field as well as describing applications and concepts.

Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday

Download Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821842492
Total Pages : 472 pages
Book Rating : 4.8/5 (424 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday by : Fritz Gesztesy

Download or read book Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday written by Fritz Gesztesy and published by American Mathematical Soc.. This book was released on 2007 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields, and the Semiclassical Limit. Part 2 contains surveys in the areas of Random andErgodic Schrodinger Operators, Singular Continuous Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. In several cases, this collection of surveys portrays both the history of a subject and its current state of the art. A substantial part of the contributions to this Festschrift are survey articles on the state of the art of certain areas with special emphasis on open problems. This will benefit graduate students as well as researchers who want to get a quick, yet comprehensiveintroduction into an area covered in this volume.

The Inverse Problem of Scattering Theory

Download The Inverse Problem of Scattering Theory PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486842495
Total Pages : 307 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis The Inverse Problem of Scattering Theory by : Z.S. Agranovich

Download or read book The Inverse Problem of Scattering Theory written by Z.S. Agranovich and published by Courier Dover Publications. This book was released on 2020-05-21 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph by two Soviet experts in mathematical physics was a major contribution to inverse scattering theory. The two-part treatment examines the boundary-value problem with and without singularities. 1963 edition.

An Introduction to the Mathematical Theory of Inverse Problems

Download An Introduction to the Mathematical Theory of Inverse Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441984747
Total Pages : 314 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Mathematical Theory of Inverse Problems by : Andreas Kirsch

Download or read book An Introduction to the Mathematical Theory of Inverse Problems written by Andreas Kirsch and published by Springer Science & Business Media. This book was released on 2011-03-24 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.

Functional Analysis, Spectral Theory, and Applications

Download Functional Analysis, Spectral Theory, and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319585401
Total Pages : 626 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Spectral Theory, and Applications by : Manfred Einsiedler

Download or read book Functional Analysis, Spectral Theory, and Applications written by Manfred Einsiedler and published by Springer. This book was released on 2017-11-21 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

Inverse Boundary Spectral Problems

Download Inverse Boundary Spectral Problems PDF Online Free

Author :
Publisher : Chapman and Hall/CRC
ISBN 13 : 9781584880059
Total Pages : 260 pages
Book Rating : 4.8/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Inverse Boundary Spectral Problems by : Alexander Kachalov

Download or read book Inverse Boundary Spectral Problems written by Alexander Kachalov and published by Chapman and Hall/CRC. This book was released on 2001-07-30 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse boundary problems are a rapidly developing area of applied mathematics with applications throughout physics and the engineering sciences. However, the mathematical theory of inverse problems remains incomplete and needs further development to aid in the solution of many important practical problems. Inverse Boundary Spectral Problems develop a rigorous theory for solving several types of inverse problems exactly. In it, the authors consider the following: "Can the unknown coefficients of an elliptic partial differential equation be determined from the eigenvalues and the boundary values of the eigenfunctions?" Along with this problem, many inverse problems for heat and wave equations are solved. The authors approach inverse problems in a coordinate invariant way, that is, by applying ideas drawn from differential geometry. To solve them, they apply methods of Riemannian geometry, modern control theory, and the theory of localized wave packets, also known as Gaussian beams. The treatment includes the relevant background of each of these areas. Although the theory of inverse boundary spectral problems has been in development for at least 10 years, until now the literature has been scattered throughout various journals. This self-contained monograph summarizes the relevant concepts and the techniques useful for dealing with them.

Spectral Theory in Riemannian Geometry

Download Spectral Theory in Riemannian Geometry PDF Online Free

Author :
Publisher : Erich Schmidt Verlag GmbH & Co. KG
ISBN 13 : 9783037191514
Total Pages : 204 pages
Book Rating : 4.1/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory in Riemannian Geometry by : Olivier Lablée

Download or read book Spectral Theory in Riemannian Geometry written by Olivier Lablée and published by Erich Schmidt Verlag GmbH & Co. KG. This book was released on 2015 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral theory is a diverse area of mathematics that derives its motivations, goals, and impetus from several sources. In particular, the spectral theory of the Laplacian on a compact Riemannian manifold is a central object in differential geometry. From a physical point a view, the Laplacian on a compact Riemannian manifold is a fundamental linear operator which describes numerous propagation phenomena: heat propagation, wave propagation, quantum dynamics, etc. Moreover, the spectrum of the Laplacian contains vast information about the geometry of the manifold. This book gives a self-contained introduction to spectral geometry on compact Riemannian manifolds. Starting with an overview of spectral theory on Hilbert spaces, the book proceeds to a description of the basic notions in Riemannian geometry. Then its makes its way to topics of main interests in spectral geometry. The topics presented include direct and inverse problems. Direct problems are concerned with computing or finding properties on the eigenvalues while the main issue in inverse problems is knowing the spectrum of the Laplacian, can we determine the geometry of the manifold? Addressed to students or young researchers, the present book is a first introduction to spectral theory applied to geometry. For readers interested in pursuing the subject further, this book will provide a basis for understanding principles, concepts, and developments of spectral geometry.

A Guide to Spectral Theory

Download A Guide to Spectral Theory PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030674622
Total Pages : 258 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis A Guide to Spectral Theory by : Christophe Cheverry

Download or read book A Guide to Spectral Theory written by Christophe Cheverry and published by Springer Nature. This book was released on 2021-05-06 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a graduate-level introduction to the spectral theory of linear operators on Banach and Hilbert spaces, guiding readers through key components of spectral theory and its applications in quantum physics. Based on their extensive teaching experience, the authors present topics in a progressive manner so that each chapter builds on the ones preceding. Researchers and students alike will also appreciate the exploration of more advanced applications and research perspectives presented near the end of the book. Beginning with a brief introduction to the relationship between spectral theory and quantum physics, the authors go on to explore unbounded operators, analyzing closed, adjoint, and self-adjoint operators. Next, the spectrum of a closed operator is defined and the fundamental properties of Fredholm operators are introduced. The authors then develop the Grushin method to execute the spectral analysis of compact operators. The chapters that follow are devoted to examining Hille-Yoshida and Stone theorems, the spectral analysis of self-adjoint operators, and trace-class and Hilbert-Schmidt operators. The final chapter opens the discussion to several selected applications. Throughout this textbook, detailed proofs are given, and the statements are illustrated by a number of well-chosen examples. At the end, an appendix about foundational functional analysis theorems is provided to help the uninitiated reader. A Guide to Spectral Theory: Applications and Exercises is intended for graduate students taking an introductory course in spectral theory or operator theory. A background in linear functional analysis and partial differential equations is assumed; basic knowledge of bounded linear operators is useful but not required. PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters.

Jacobi Operators and Completely Integrable Nonlinear Lattices

Download Jacobi Operators and Completely Integrable Nonlinear Lattices PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821819402
Total Pages : 373 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Jacobi Operators and Completely Integrable Nonlinear Lattices by : Gerald Teschl

Download or read book Jacobi Operators and Completely Integrable Nonlinear Lattices written by Gerald Teschl and published by American Mathematical Soc.. This book was released on 2000 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume serves as an introduction and reference source on spectral and inverse theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy.