Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Invariance Principles In Rough Path Topology For Independent Random Variables And Markov Chains
Download Invariance Principles In Rough Path Topology For Independent Random Variables And Markov Chains full books in PDF, epub, and Kindle. Read online Invariance Principles In Rough Path Topology For Independent Random Variables And Markov Chains ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A Course on Rough Paths by : Peter K. Friz
Download or read book A Course on Rough Paths written by Peter K. Friz and published by Springer Nature. This book was released on 2020-05-27 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than Itô-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH
Download or read book Brownian Motion written by Peter Mörters and published by Cambridge University Press. This book was released on 2010-03-25 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Book Synopsis Multidimensional Stochastic Processes as Rough Paths by : Peter K. Friz
Download or read book Multidimensional Stochastic Processes as Rough Paths written by Peter K. Friz and published by Cambridge University Press. This book was released on 2010-02-04 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations. Key theorems of modern stochastic analysis (existence and limit theorems for stochastic flows, Freidlin-Wentzell theory, the Stroock-Varadhan support description) can be obtained with dramatic simplifications. Classical approximation results and their limitations (Wong-Zakai, McShane's counterexample) receive 'obvious' rough path explanations. Evidence is building that rough paths will play an important role in the future analysis of stochastic partial differential equations and the authors include some first results in this direction. They also emphasize interactions with other parts of mathematics, including Caratheodory geometry, Dirichlet forms and Malliavin calculus. Based on successful courses at the graduate level, this up-to-date introduction presents the theory of rough paths and its applications to stochastic analysis. Examples, explanations and exercises make the book accessible to graduate students and researchers from a variety of fields.
Book Synopsis Markov Processes, Semigroups, and Generators by : Vassili N. Kolokoltsov
Download or read book Markov Processes, Semigroups, and Generators written by Vassili N. Kolokoltsov and published by Walter de Gruyter. This book was released on 2011 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work offers a highly useful, well developed reference on Markov processes, the universal model for random processes and evolutions. The wide range of applications, in exact sciences as well as in other areas like social studies, require a volume that offers a refresher on fundamentals before conveying the Markov processes and examples for
Book Synopsis Differential Equations Driven by Rough Paths by : Terry J. Lyons
Download or read book Differential Equations Driven by Rough Paths written by Terry J. Lyons and published by Springer. This book was released on 2007-04-25 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Each year young mathematicians congregate in Saint Flour, France, and listen to extended lecture courses on new topics in Probability Theory. The goal of these notes, representing a course given by Terry Lyons in 2004, is to provide a straightforward and self supporting but minimalist account of the key results forming the foundation of the theory of rough paths.
Book Synopsis Introduction to Stochastic Calculus with Applications by : Fima C. Klebaner
Download or read book Introduction to Stochastic Calculus with Applications written by Fima C. Klebaner and published by Imperial College Press. This book was released on 2005 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.
Book Synopsis Probability on Graphs by : Geoffrey Grimmett
Download or read book Probability on Graphs written by Geoffrey Grimmett and published by Cambridge University Press. This book was released on 2018-01-25 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.
Book Synopsis Multiparameter Processes by : Davar Khoshnevisan
Download or read book Multiparameter Processes written by Davar Khoshnevisan and published by Springer Science & Business Media. This book was released on 2006-04-10 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-contained presentation: from elementary material to state-of-the-art research; Much of the theory in book-form for the first time; Connections are made between probability and other areas of mathematics, engineering and mathematical physics
Book Synopsis Non-homogeneous Random Walks by : Mikhail Menshikov
Download or read book Non-homogeneous Random Walks written by Mikhail Menshikov and published by Cambridge University Press. This book was released on 2016-12-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.
Book Synopsis Random Walks on Infinite Graphs and Groups by : Wolfgang Woess
Download or read book Random Walks on Infinite Graphs and Groups written by Wolfgang Woess and published by Cambridge University Press. This book was released on 2000-02-13 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.
Book Synopsis Diffusion Processes and Stochastic Calculus by : Fabrice Baudoin
Download or read book Diffusion Processes and Stochastic Calculus written by Fabrice Baudoin and published by Erich Schmidt Verlag GmbH & Co. KG. This book was released on 2014 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of the book is to present, at a graduate level and in a self-contained way, the most important aspects of the theory of continuous stochastic processes in continuous time and to introduce some of its ramifications such as the theory of semigroups, the Malliavin calculus, and the Lyons' rough paths. This book is intended for students, or even researchers, who wish to learn the basics in a concise but complete and rigorous manner. Several exercises are distributed throughout the text to test the understanding of the reader and each chapter ends with bibliographic comments aimed at those interested in exploring the materials further. Stochastic calculus was developed in the 1950s and the range of its applications is huge and still growing today. Besides being a fundamental component of modern probability theory, domains of applications include but are not limited to: mathematical finance, biology, physics, and engineering sciences. The first part of the text is devoted to the general theory of stochastic processes. The author focuses on the existence and regularity results for processes and on the theory of martingales. This allows him to introduce the Brownian motion quickly and study its most fundamental properties. The second part deals with the study of Markov processes, in particular, diffusions. The author's goal is to stress the connections between these processes and the theory of evolution semigroups. The third part deals with stochastic integrals, stochastic differential equations and Malliavin calculus. In the fourth and final part, the author presents an introduction to the very new theory of rough paths by Terry Lyons.
Book Synopsis Séminaire de Probabilités XXXVIII by : Michel Émery
Download or read book Séminaire de Probabilités XXXVIII written by Michel Émery and published by Springer Science & Business Media. This book was released on 2004-12-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Besides a series of six articles on Lévy processes, Volume 38 of the Séminaire de Probabilités contains contributions whose topics range from analysis of semi-groups to free probability, via martingale theory, Wiener space and Brownian motion, Gaussian processes and matrices, diffusions and their applications to PDEs. As do all previous volumes of this series, it provides an overview on the current state of the art in the research on stochastic processes.
Book Synopsis Large Deviations For Performance Analysis by : Adam Shwartz
Download or read book Large Deviations For Performance Analysis written by Adam Shwartz and published by CRC Press. This book was released on 1995-09-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of two synergistic parts. The first half develops the theory of large deviations from the beginning (iid random variables) through recent results on the theory for processes with boundaries, keeping to a very narrow path: continuous-time, discrete-state processes. By developing only what is needed for the applications, the theory is kept to a manageable level, both in terms of length and in terms of difficulty. Within its scope, the treatment is detailed, comprehensive and self-contained. As the book shows, there are sufficiently many interesting applications of jump Markov processes to warrant a special treatment. The second half is a collection of applications developed at Bell Laboratories. The applications cover large areas of the theory of communication networks: circuit-switched transmission, packet transmission, multiple access channels, and the M/M/1 queue. Aspects of parallel computation are covered as well: basics of job allocation, rollback-based parallel simulation, assorted priority queueing models that might be used in performance models of various computer architectures, and asymptotic coupling of processors. These applications are thoroughly analyzed using the tools developed in the first half of the book. Features: A transient analysis of the M/M/1 queue; a new analysis of an Aloha model using Markov modulated theory; new results for Erlang's model; new results for the AMS model; analysis of "serve the longer queue", "join the shorter queue" and other simple priority queues; and a simple analysis of the Flatto-Hahn-Wright model of processor-sharing.
Book Synopsis Bandit Algorithms by : Tor Lattimore
Download or read book Bandit Algorithms written by Tor Lattimore and published by Cambridge University Press. This book was released on 2020-07-16 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.
Book Synopsis Thermodynamic Formalism by : David Ruelle
Download or read book Thermodynamic Formalism written by David Ruelle and published by Cambridge University Press. This book was released on 2004-11-25 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reissued in the Cambridge Mathematical Library this classic book outlines the theory of thermodynamic formalism which was developed to describe the properties of certain physical systems consisting of a large number of subunits. It is aimed at mathematicians interested in ergodic theory, topological dynamics, constructive quantum field theory, the study of certain differentiable dynamical systems, notably Anosov diffeomorphisms and flows. It is also of interest to theoretical physicists concerned with the conceptual basis of equilibrium statistical mechanics. The level of the presentation is generally advanced, the objective being to provide an efficient research tool and a text for use in graduate teaching. Background material on mathematics has been collected in appendices to help the reader. Extra material is given in the form of updates of problems that were open at the original time of writing and as a new preface specially written for this new edition by the author.
Book Synopsis The Random-Cluster Model by : Geoffrey R. Grimmett
Download or read book The Random-Cluster Model written by Geoffrey R. Grimmett and published by Springer Science & Business Media. This book was released on 2006-12-13 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.
Book Synopsis Optimal Transport by : Cédric Villani
Download or read book Optimal Transport written by Cédric Villani and published by Springer Science & Business Media. This book was released on 2008-10-26 with total page 970 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.