TinyML

Download TinyML PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492052019
Total Pages : 504 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis TinyML by : Pete Warden

Download or read book TinyML written by Pete Warden and published by O'Reilly Media. This book was released on 2019-12-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Introduction to TInyML

Download Introduction to TInyML PDF Online Free

Author :
Publisher : AITS Inc
ISBN 13 :
Total Pages : 182 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Introduction to TInyML by : Rohit Sharma

Download or read book Introduction to TInyML written by Rohit Sharma and published by AITS Inc. This book was released on 2022-07-20 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an effort by AI Technology & Systems to demystify the TinyML technology including market, applications, algorithms, tools and technology. the book dive deeper into the technology beyond common application and keep it light for the readers with varying background including students, hobbyists, managers, market researchers and developers. It starts with introduction to TinyML with benefits and scalability. It introduces no-code and low-code tinyML platform to develop production worthy solutions including audio wake word, visual wake word, American sign language and predictive maintenance. Last two chapters are devoted to sensor and hardware agnostic autoML and tinyML compiler technologies. More information at http://thetinymlbook.com/

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Practical Deep Learning for Cloud, Mobile, and Edge

Download Practical Deep Learning for Cloud, Mobile, and Edge PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492034819
Total Pages : 585 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Deep Learning for Cloud, Mobile, and Edge by : Anirudh Koul

Download or read book Practical Deep Learning for Cloud, Mobile, and Edge written by Anirudh Koul and published by "O'Reilly Media, Inc.". This book was released on 2019-10-14 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users

The Data Science Workshop

Download The Data Science Workshop PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838983082
Total Pages : 817 pages
Book Rating : 4.8/5 (389 download)

DOWNLOAD NOW!


Book Synopsis The Data Science Workshop by : Anthony So

Download or read book The Data Science Workshop written by Anthony So and published by Packt Publishing Ltd. This book was released on 2020-01-29 with total page 817 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cut through the noise and get real results with a step-by-step approach to data science Key Features Ideal for the data science beginner who is getting started for the first time A data science tutorial with step-by-step exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book DescriptionYou already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.What you will learn Find out the key differences between supervised and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Learn about different algorithms such as regression, classification, and clustering Discover advanced techniques to improve model ensembling and accuracy Speed up the process of creating new features with automated feature tool Simplify machine learning using open source Python packages Who this book is forOur goal at Packt is to help you be successful, in whatever it is you choose to do. The Data Science Workshop is an ideal data science tutorial for the data science beginner who is just getting started. Pick up a Workshop today and let Packt help you develop skills that stick with you for life.

Machine Learning For Dummies

Download Machine Learning For Dummies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119724015
Total Pages : 471 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning For Dummies by : John Paul Mueller

Download or read book Machine Learning For Dummies written by John Paul Mueller and published by John Wiley & Sons. This book was released on 2021-02-09 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.

LPWAN Technologies for IoT and M2M Applications

Download LPWAN Technologies for IoT and M2M Applications PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128188804
Total Pages : 446 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis LPWAN Technologies for IoT and M2M Applications by : Bharat S Chaudhari

Download or read book LPWAN Technologies for IoT and M2M Applications written by Bharat S Chaudhari and published by Academic Press. This book was released on 2020-03-19 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low power wide area network (LPWAN) is a promising solution for long range and low power Internet of Things (IoT) and machine to machine (M2M) communication applications. The LPWANs are resource-constrained networks and have critical requirements for long battery life, extended coverage, high scalability, and low device and deployment costs. There are several design and deployment challenges such as media access control, spectrum management, link optimization and adaptability, energy harvesting, duty cycle restrictions, coexistence and interference, interoperability and heterogeneity, security and privacy, and others.LPWAN Technologies for IoT and M2M Applications is intended to provide a one-stop solution for study of LPWAN technologies as it covers a broad range of topics and multidisciplinary aspects of LPWAN and IoT. Primarily, the book focuses on design requirements and constraints, channel access, spectrum management, coexistence and interference issues, energy efficiency, technology candidates, use cases of different applications in smart city, healthcare, and transportation systems, security issues, hardware/software platforms, challenges, and future directions.

Hardware-Aware Probabilistic Machine Learning Models

Download Hardware-Aware Probabilistic Machine Learning Models PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030740420
Total Pages : 163 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Hardware-Aware Probabilistic Machine Learning Models by : Laura Isabel Galindez Olascoaga

Download or read book Hardware-Aware Probabilistic Machine Learning Models written by Laura Isabel Galindez Olascoaga and published by Springer Nature. This book was released on 2021-05-19 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them. These models can be used to evaluate the impact that a specific device configuration may have on resource consumption and performance of the machine learning task, with the overarching goal of balancing the two optimally. The book first motivates extreme-edge computing in the context of the Internet of Things (IoT) paradigm. Then, it briefly reviews the steps involved in the execution of a machine learning task and identifies the implications associated with implementing this type of workload in resource-constrained devices. The core of this book focuses on augmenting and exploiting the properties of Bayesian Networks and Probabilistic Circuits in order to endow them with hardware-awareness. The proposed models can encode the properties of various device sub-systems that are typically not considered by other resource-aware strategies, bringing about resource-saving opportunities that traditional approaches fail to uncover. The performance of the proposed models and strategies is empirically evaluated for several use cases. All of the considered examples show the potential of attaining significant resource-saving opportunities with minimal accuracy losses at application time. Overall, this book constitutes a novel approach to hardware-algorithm co-optimization that further bridges the fields of Machine Learning and Electrical Engineering.

Visual Inference for IoT Systems: A Practical Approach

Download Visual Inference for IoT Systems: A Practical Approach PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030909034
Total Pages : 171 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Visual Inference for IoT Systems: A Practical Approach by : Delia Velasco-Montero

Download or read book Visual Inference for IoT Systems: A Practical Approach written by Delia Velasco-Montero and published by Springer Nature. This book was released on 2022-01-28 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic approach to the implementation of Internet of Things (IoT) devices achieving visual inference through deep neural networks. Practical aspects are covered, with a focus on providing guidelines to optimally select hardware and software components as well as network architectures according to prescribed application requirements. The monograph includes a remarkable set of experimental results and functional procedures supporting the theoretical concepts and methodologies introduced. A case study on animal recognition based on smart camera traps is also presented and thoroughly analyzed. In this case study, different system alternatives are explored and a particular realization is completely developed. Illustrations, numerous plots from simulations and experiments, and supporting information in the form of charts and tables make Visual Inference and IoT Systems: A Practical Approach a clear and detailed guide to the topic. It will be of interest to researchers, industrial practitioners, and graduate students in the fields of computer vision and IoT.

Grokking Machine Learning

Download Grokking Machine Learning PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617295914
Total Pages : 510 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Grokking Machine Learning by : Luis Serrano

Download or read book Grokking Machine Learning written by Luis Serrano and published by Simon and Schuster. This book was released on 2021-12-14 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grokking Machine Learning presents machine learning algorithms and techniques in a way that anyone can understand. This book skips the confused academic jargon and offers clear explanations that require only basic algebra. As you go, you'll build interesting projects with Python, including models for spam detection and image recognition. You'll also pick up practical skills for cleaning and preparing data.

Low-Power Computer Vision

Download Low-Power Computer Vision PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000540960
Total Pages : 395 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Low-Power Computer Vision by : George K. Thiruvathukal

Download or read book Low-Power Computer Vision written by George K. Thiruvathukal and published by CRC Press. This book was released on 2022-02-22 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.

MicroPython for the Internet of Things

Download MicroPython for the Internet of Things PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484231236
Total Pages : 454 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis MicroPython for the Internet of Things by : Charles Bell

Download or read book MicroPython for the Internet of Things written by Charles Bell and published by Apress. This book was released on 2017-11-24 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quickly learn to program for microcontrollers and IoT devices without a lot of study and expense. MicroPython and controllers that support it eliminate the need for programming in a C-like language, making the creation of IoT applications and devices easier and more accessible than ever. MicroPython for the Internet of Things is ideal for readers new to electronics and the world of IoT. Specific examples are provided covering a range of supported devices, sensors, and MicroPython boards such as Pycom’s WiPy modules and MicroPython’s pyboard. Never has programming for microcontrollers been easier. The book takes a practical and hands-on approach without a lot of detours into the depths of theory. The book: Shows a faster and easier way to program microcontrollers and IoT devices Teaches MicroPython, a variant of one of the most widely used scripting languages Is friendly and accessible to those new to electronics, with fun example projects What You'll Learn Program in MicroPython Understand sensors and basic electronics Develop your own IoT projects Build applications for popular boards such as WiPy and pyboard Load MicroPython on the ESP8266 and similar boards Interface with hardware breakout boards Connect hardware to software through MicroPython Explore the easy-to-use Adafruit IO connecting your microcontroller to the cloud Who This Book Is For Anyone interested in building IoT solutions without the heavy burden of programming in C++ or C. The book also appeals to those wanting an easier way to work with hardware than is provided by the Arduino and the Raspberry Pi platforms.

Pattern Recognition and Image Analysis

Download Pattern Recognition and Image Analysis PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 :
Total Pages : 504 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Pattern Recognition and Image Analysis by : Earl Gose

Download or read book Pattern Recognition and Image Analysis written by Earl Gose and published by Prentice Hall. This book was released on 1996 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 20 to 25 years, pattern recognition has become an important part of image processing applications where the input data is an image. This book is a complete introduction to pattern recognition and its increasing role in image processing. It covers the traditional issues of pattern recognition and also introduces two of the fastest growing areas: Image Processing and Artificial Neural Networks. Examples and digital images illustrate the techniques, while an appendix describes pattern recognition using the SAS statistical software system.

IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning

Download IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030667707
Total Pages : 317 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning by : Joao Gama

Download or read book IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning written by Joao Gama and published by Springer Nature. This book was released on 2021-01-09 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes selected papers from the Second International Workshop on IoT Streams for Data-Driven Predictive Maintenance, IoT Streams 2020, and First International Workshop on IoT, Edge, and Mobile for Embedded Machine Learning, ITEM 2020, co-located with ECML/PKDD 2020 and held in September 2020. Due to the COVID-19 pandemic the workshops were held online. The 21 full papers and 3 short papers presented in this volume were thoroughly reviewed and selected from 35 submissions and are organized according to the workshops and their topics: IoT Streams 2020: Stream Learning; Feature Learning; ITEM 2020: Unsupervised Machine Learning; Hardware; Methods; Quantization.

Dataset Shift in Machine Learning

Download Dataset Shift in Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262170051
Total Pages : 246 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Dataset Shift in Machine Learning by : Joaquin Quinonero-Candela

Download or read book Dataset Shift in Machine Learning written by Joaquin Quinonero-Candela and published by MIT Press. This book was released on 2008-12-12 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions. Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift. Contributors Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama

Hands-on TinyML

Download Hands-on TinyML PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9355518447
Total Pages : 309 pages
Book Rating : 4.3/5 (555 download)

DOWNLOAD NOW!


Book Synopsis Hands-on TinyML by : Rohan Banerjee

Download or read book Hands-on TinyML written by Rohan Banerjee and published by BPB Publications. This book was released on 2023-06-09 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to deploy complex machine learning models on single board computers, mobile phones, and microcontrollers KEY FEATURES ● Gain a comprehensive understanding of TinyML's core concepts. ● Learn how to design your own TinyML applications from the ground up. ● Explore cutting-edge models, hardware, and software platforms for developing TinyML. DESCRIPTION TinyML is an innovative technology that empowers small and resource-constrained edge devices with the capabilities of machine learning. If you're interested in deploying machine learning models directly on microcontrollers, single board computers, or mobile phones without relying on continuous cloud connectivity, this book is an ideal resource for you. The book begins with a refresher on Python, covering essential concepts and popular libraries like NumPy and Pandas. It then delves into the fundamentals of neural networks and explores the practical implementation of deep learning using TensorFlow and Keras. Furthermore, the book provides an in-depth overview of TensorFlow Lite, a specialized framework for optimizing and deploying models on edge devices. It also discusses various model optimization techniques that reduce the model size without compromising performance. As the book progresses, it offers a step-by-step guidance on creating deep learning models for object detection and face recognition specifically tailored for the Raspberry Pi. You will also be introduced to the intricacies of deploying TensorFlow Lite applications on real-world edge devices. Lastly, the book explores the exciting possibilities of using TensorFlow Lite on microcontroller units (MCUs), opening up new opportunities for deploying machine learning models on resource-constrained devices. Overall, this book serves as a valuable resource for anyone interested in harnessing the power of machine learning on edge devices. WHAT YOU WILL LEARN ● Explore different hardware and software platforms for designing TinyML. ● Create a deep learning model for object detection using the MobileNet architecture. ● Optimize large neural network models with the TensorFlow Model Optimization Toolkit. ● Explore the capabilities of TensorFlow Lite on microcontrollers. ● Build a face recognition system on a Raspberry Pi. ● Build a keyword detection system on an Arduino Nano. WHO THIS BOOK IS FOR This book is designed for undergraduate and postgraduate students in the fields of Computer Science, Artificial Intelligence, Electronics, and Electrical Engineering, including MSc and MCA programs. It is also a valuable reference for young professionals who have recently entered the industry and wish to enhance their skills. TABLE OF CONTENTS 1. Introduction to TinyML and its Applications 2. Crash Course on Python and TensorFlow Basics 3. Gearing with Deep Learning 4. Experiencing TensorFlow 5. Model Optimization Using TensorFlow 6. Deploying My First TinyML Application 7. Deep Dive into Application Deployment 8. TensorFlow Lite for Microcontrollers 9. Keyword Spotting on Microcontrollers 10. Conclusion and Further Reading Appendix

Machine Intelligence in Design Automation

Download Machine Intelligence in Design Automation PDF Online Free

Author :
Publisher :
ISBN 13 : 9781980554356
Total Pages : 219 pages
Book Rating : 4.5/5 (543 download)

DOWNLOAD NOW!


Book Synopsis Machine Intelligence in Design Automation by : Rohit Sharma

Download or read book Machine Intelligence in Design Automation written by Rohit Sharma and published by . This book was released on 2018-03-13 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a hands-on approach for solving electronic design automation problems with modern machine intelligence techniques by including step-by-step development of commercial grade design applications including resistance estimation, capacitance estimation, cell classification and others using dataset extracted from designs at 20nm. It walks the reader step by step in building solution flow for EDA problems with Python and Tensorflow.Intended audience includes design automation engineers, managers, executives, research professionals, graduate students, Machine learning enthusiasts, EDA and CAD developers, mentors, and the merely inquisitive. It is organized to serve as a compendium to a beginner, a ready reference to intermediate and source for an expert.