Introduction to Linear Models and Statistical Inference

Download Introduction to Linear Models and Statistical Inference PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471740101
Total Pages : 600 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Linear Models and Statistical Inference by : Steven J. Janke

Download or read book Introduction to Linear Models and Statistical Inference written by Steven J. Janke and published by John Wiley & Sons. This book was released on 2005-09-15 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: A multidisciplinary approach that emphasizes learning by analyzing real-world data sets This book is the result of the authors' hands-on classroom experience and is tailored to reflect how students best learn to analyze linear relationships. The text begins with the introduction of four simple examples of actual data sets. These examples are developed and analyzed throughout the text, and more complicated examples of data sets are introduced along the way. Taking a multidisciplinary approach, the book traces the conclusion of the analyses of data sets taken from geology, biology, economics, psychology, education, sociology, and environmental science. As students learn to analyze the data sets, they master increasingly sophisticated linear modeling techniques, including: * Simple linear models * Multivariate models * Model building * Analysis of variance (ANOVA) * Analysis of covariance (ANCOVA) * Logistic regression * Total least squares The basics of statistical analysis are developed and emphasized, particularly in testing the assumptions and drawing inferences from linear models. Exercises are included at the end of each chapter to test students' skills before moving on to more advanced techniques and models. These exercises are marked to indicate whether calculus, linear algebra, or computer skills are needed. Unlike other texts in the field, the mathematics underlying the models is carefully explained and accessible to students who may not have any background in calculus or linear algebra. Most chapters include an optional final section on linear algebra for students interested in developing a deeper understanding. The many data sets that appear in the text are available on the book's Web site. The MINITAB(r) software program is used to illustrate many of the examples. For students unfamiliar with MINITAB(r), an appendix introduces the key features needed to study linear models. With its multidisciplinary approach and use of real-world data sets that bring the subject alive, this is an excellent introduction to linear models for students in any of the natural or social sciences.

Linear Models in Statistics

Download Linear Models in Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470192607
Total Pages : 690 pages
Book Rating : 4.4/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Linear Models in Statistics by : Alvin C. Rencher

Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Linear Statistical Models

Download Linear Statistical Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470231467
Total Pages : 517 pages
Book Rating : 4.4/5 (72 download)

DOWNLOAD NOW!


Book Synopsis Linear Statistical Models by : James H. Stapleton

Download or read book Linear Statistical Models written by James H. Stapleton and published by John Wiley & Sons. This book was released on 2009-08-03 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "This impressive and eminently readable text . . . [is] a welcome addition to the statistical literature." —The Indian Journal of Statistics Revised to reflect the current developments on the topic, Linear Statistical Models, Second Edition provides an up-to-date approach to various statistical model concepts. The book includes clear discussions that illustrate key concepts in an accessible and interesting format while incorporating the most modern software applications. This Second Edition follows an introduction-theorem-proof-examples format that allows for easier comprehension of how to use the methods and recognize the associated assumptions and limits. In addition to discussions on the methods of random vectors, multiple regression techniques, simultaneous confidence intervals, and analysis of frequency data, new topics such as mixed models and curve fitting of models have been added to thoroughly update and modernize the book. Additional topical coverage includes: An introduction to R and S-Plus® with many examples Multiple comparison procedures Estimation of quantiles for regression models An emphasis on vector spaces and the corresponding geometry Extensive graphical displays accompany the book's updated descriptions and examples, which can be simulated using R, S-Plus®, and SAS® code. Problems at the end of each chapter allow readers to test their understanding of the presented concepts, and additional data sets are available via the book's FTP site. Linear Statistical Models, Second Edition is an excellent book for courses on linear models at the upper-undergraduate and graduate levels. It also serves as a comprehensive reference for statisticians, engineers, and scientists who apply multiple regression or analysis of variance in their everyday work.

Models for Probability and Statistical Inference

Download Models for Probability and Statistical Inference PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470183403
Total Pages : 466 pages
Book Rating : 4.4/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Models for Probability and Statistical Inference by : James H. Stapleton

Download or read book Models for Probability and Statistical Inference written by James H. Stapleton and published by John Wiley & Sons. This book was released on 2007-12-14 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.

Introduction to the Theory of Statistical Inference

Download Introduction to the Theory of Statistical Inference PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466503203
Total Pages : 280 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Theory of Statistical Inference by : Hannelore Liero

Download or read book Introduction to the Theory of Statistical Inference written by Hannelore Liero and published by CRC Press. This book was released on 2016-04-19 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the authors' lecture notes, this text presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Unlike related textbooks, it combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models. Suitable for a second semester undergraduate course on statistical inference, the text offers proofs to support the mathematics and does not require any use of measure theory. It illustrates core concepts using cartoons and provides solutions to all examples and problems.

Regression Analysis and Linear Models

Download Regression Analysis and Linear Models PDF Online Free

Author :
Publisher : Guilford Publications
ISBN 13 : 1462527981
Total Pages : 689 pages
Book Rating : 4.4/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Regression Analysis and Linear Models by : Richard B. Darlington

Download or read book Regression Analysis and Linear Models written by Richard B. Darlington and published by Guilford Publications. This book was released on 2016-08-22 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.

Foundations of Linear and Generalized Linear Models

Download Foundations of Linear and Generalized Linear Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118730038
Total Pages : 471 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Linear and Generalized Linear Models by : Alan Agresti

Download or read book Foundations of Linear and Generalized Linear Models written by Alan Agresti and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.

Introduction to Linear Regression Analysis

Download Introduction to Linear Regression Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119180171
Total Pages : 679 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Linear Regression Analysis by : Douglas C. Montgomery

Download or read book Introduction to Linear Regression Analysis written by Douglas C. Montgomery and published by John Wiley & Sons. This book was released on 2015-06-29 with total page 679 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Fourth Edition "As with previous editions, the authors have produced a leading textbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Following a general introduction to regression modeling, including typical applications, a host of technical tools are outlined such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book then discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. The Fifth Edition features numerous newly added topics, including: A chapter on regression analysis of time series data that presents the Durbin-Watson test and other techniques for detecting autocorrelation as well as parameter estimation in time series regression models Regression models with random effects in addition to a discussion on subsampling and the importance of the mixed model Tests on individual regression coefficients and subsets of coefficients Examples of current uses of simple linear regression models and the use of multiple regression models for understanding patient satisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors have incorporated JMP and the freely available R software to illustrate the discussed techniques and procedures in this new edition. Numerous exercises have been added throughout, allowing readers to test their understanding of the material. Introduction to Linear Regression Analysis, Fifth Edition is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineering, life and biological sciences, and the social sciences.

Linear Models and the Relevant Distributions and Matrix Algebra

Download Linear Models and the Relevant Distributions and Matrix Algebra PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000983757
Total Pages : 242 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Linear Models and the Relevant Distributions and Matrix Algebra by : David A. Harville

Download or read book Linear Models and the Relevant Distributions and Matrix Algebra written by David A. Harville and published by CRC Press. This book was released on 2023-10-23 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Exercises and solutions are included throughout, from both the first and second volume • Includes coverage of additional topics not covered in the first volume • Highly valuable as a reference book for graduate students or researchers

All of Statistics

Download All of Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387217363
Total Pages : 446 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis All of Statistics by : Larry Wasserman

Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Regression Analysis

Download Regression Analysis PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 9780761929048
Total Pages : 286 pages
Book Rating : 4.9/5 (29 download)

DOWNLOAD NOW!


Book Synopsis Regression Analysis by : Richard A. Berk

Download or read book Regression Analysis written by Richard A. Berk and published by SAGE. This book was released on 2004 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: PLEASE UPDATE SAGE INDIA AND SAGE UK ADDRESSES ON IMPRINT PAGE.

An Introduction to Probability and Statistical Inference

Download An Introduction to Probability and Statistical Inference PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128004371
Total Pages : 624 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Probability and Statistical Inference by : George G. Roussas

Download or read book An Introduction to Probability and Statistical Inference written by George G. Roussas and published by Academic Press. This book was released on 2014-10-21 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture. - Content, examples, an enhanced number of exercises, and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities - Reorganized material in the statistical portion of the book to ensure continuity and enhance understanding - A relatively rigorous, yet accessible and always within the prescribed prerequisites, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines - Relevant proofs where appropriate in each section, followed by exercises with useful clues to their solutions - Brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to instructors in an Answers Manual

A Concise Introduction to Statistical Inference

Download A Concise Introduction to Statistical Inference PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 149875578X
Total Pages : 231 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis A Concise Introduction to Statistical Inference by : Jacco Thijssen

Download or read book A Concise Introduction to Statistical Inference written by Jacco Thijssen and published by CRC Press. This book was released on 2016-11-25 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This short book introduces the main ideas of statistical inference in a way that is both user friendly and mathematically sound. Particular emphasis is placed on the common foundation of many models used in practice. In addition, the book focuses on the formulation of appropriate statistical models to study problems in business, economics, and the social sciences, as well as on how to interpret the results from statistical analyses. The book will be useful to students who are interested in rigorous applications of statistics to problems in business, economics and the social sciences, as well as students who have studied statistics in the past, but need a more solid grounding in statistical techniques to further their careers. Jacco Thijssen is professor of finance at the University of York, UK. He holds a PhD in mathematical economics from Tilburg University, Netherlands. His main research interests are in applications of optimal stopping theory, stochastic calculus, and game theory to problems in economics and finance. Professor Thijssen has earned several awards for his statistics teaching.

Probability and Statistical Inference

Download Probability and Statistical Inference PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 131536204X
Total Pages : 444 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Probability and Statistical Inference by : Miltiadis C. Mavrakakis

Download or read book Probability and Statistical Inference written by Miltiadis C. Mavrakakis and published by CRC Press. This book was released on 2021-03-28 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Statistical Inference: From Basic Principles to Advanced Models covers aspects of probability, distribution theory, and inference that are fundamental to a proper understanding of data analysis and statistical modelling. It presents these topics in an accessible manner without sacrificing mathematical rigour, bridging the gap between the many excellent introductory books and the more advanced, graduate-level texts. The book introduces and explores techniques that are relevant to modern practitioners, while being respectful to the history of statistical inference. It seeks to provide a thorough grounding in both the theory and application of statistics, with even the more abstract parts placed in the context of a practical setting. Features: •Complete introduction to mathematical probability, random variables, and distribution theory. •Concise but broad account of statistical modelling, covering topics such as generalised linear models, survival analysis, time series, and random processes. •Extensive discussion of the key concepts in classical statistics (point estimation, interval estimation, hypothesis testing) and the main techniques in likelihood-based inference. •Detailed introduction to Bayesian statistics and associated topics. •Practical illustration of some of the main computational methods used in modern statistical inference (simulation, boostrap, MCMC). This book is for students who have already completed a first course in probability and statistics, and now wish to deepen and broaden their understanding of the subject. It can serve as a foundation for advanced undergraduate or postgraduate courses. Our aim is to challenge and excite the more mathematically able students, while providing explanations of statistical concepts that are more detailed and approachable than those in advanced texts. This book is also useful for data scientists, researchers, and other applied practitioners who want to understand the theory behind the statistical methods used in their fields.

Statistical Inference as Severe Testing

Download Statistical Inference as Severe Testing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108563309
Total Pages : 503 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo

Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Linear Models with R

Download Linear Models with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439887349
Total Pages : 284 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Linear Models with R by : Julian J. Faraway

Download or read book Linear Models with R written by Julian J. Faraway and published by CRC Press. This book was released on 2016-04-19 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models

Learning Statistics Using R

Download Learning Statistics Using R PDF Online Free

Author :
Publisher : SAGE Publications
ISBN 13 : 148332477X
Total Pages : 648 pages
Book Rating : 4.4/5 (833 download)

DOWNLOAD NOW!


Book Synopsis Learning Statistics Using R by : Randall E. Schumacker

Download or read book Learning Statistics Using R written by Randall E. Schumacker and published by SAGE Publications. This book was released on 2014-01-28 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing easy-to-use R script programs that teach descriptive statistics, graphing, and other statistical methods, Learning Statistics Using R shows readers how to run and utilize R, a free integrated statistical suite that has an extensive library of functions. Randall E. Schumacker’s comprehensive book describes in detail the processing of variables in statistical procedures. Covering a wide range of topics, from probability and sampling distribution to statistical theorems and chi-square, this introductory book helps readers learn not only how to use formulae to calculate statistics, but also how specific statistics fit into the overall research process. Learning Statistics Using R covers data input from vectors, arrays, matrices and data frames, as well as the input of data sets from SPSS, SAS, STATA and other software packages. Schumacker’s text provides the freedom to effectively calculate, manipulate, and graphically display data, using R, on different computer operating systems without the expense of commercial software. Learning Statistics Using R places statistics within the framework of conducting research, where statistical research hypotheses can be directly addressed. Each chapter includes discussion and explanations, tables and graphs, and R functions and outputs to enrich readers′ understanding of statistics through statistical computing and modeling.