Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Introduction To Finite Markov Chains
Download Introduction To Finite Markov Chains full books in PDF, epub, and Kindle. Read online Introduction To Finite Markov Chains ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Introduction to Markov Chains by : Ehrhard Behrends
Download or read book Introduction to Markov Chains written by Ehrhard Behrends and published by Vieweg+Teubner Verlag. This book was released on 2014-07-08 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Besides the investigation of general chains the book contains chapters which are concerned with eigenvalue techniques, conductance, stopping times, the strong Markov property, couplings, strong uniform times, Markov chains on arbitrary finite groups (including a crash-course in harmonic analysis), random generation and counting, Markov random fields, Gibbs fields, the Metropolis sampler, and simulated annealing. With 170 exercises.
Book Synopsis Finite Markov Chains and Algorithmic Applications by : Olle Häggström
Download or read book Finite Markov Chains and Algorithmic Applications written by Olle Häggström and published by Cambridge University Press. This book was released on 2002-05-30 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a lecture course given at Chalmers University of Technology, this 2002 book is ideal for advanced undergraduate or beginning graduate students. The author first develops the necessary background in probability theory and Markov chains before applying it to study a range of randomized algorithms with important applications in optimization and other problems in computing. Amongst the algorithms covered are the Markov chain Monte Carlo method, simulated annealing, and the recent Propp-Wilson algorithm. This book will appeal not only to mathematicians, but also to students of statistics and computer science. The subject matter is introduced in a clear and concise fashion and the numerous exercises included will help students to deepen their understanding.
Book Synopsis Finite Markov Processes and Their Applications by : Marius Iosifescu
Download or read book Finite Markov Processes and Their Applications written by Marius Iosifescu and published by Courier Corporation. This book was released on 2014-07-01 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models. The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic chains. A complete study of the general properties of homogeneous chains follows. Succeeding chapters examine the fundamental role of homogeneous infinite Markov chains in mathematical modeling employed in the fields of psychology and genetics; the basics of nonhomogeneous finite Markov chain theory; and a study of Markovian dependence in continuous time, which constitutes an elementary introduction to the study of continuous parameter stochastic processes.
Book Synopsis Finite Markov Chains by : John G Kemeny
Download or read book Finite Markov Chains written by John G Kemeny and published by . This book was released on 1960 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Introduction to Markov Processes by : Daniel W. Stroock
Download or read book An Introduction to Markov Processes written by Daniel W. Stroock and published by Springer Science & Business Media. This book was released on 2005-03-30 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a more accessible introduction than other books on Markov processes by emphasizing the structure of the subject and avoiding sophisticated measure theory Leads the reader to a rigorous understanding of basic theory
Book Synopsis Mathematical Aspects of Mixing Times in Markov Chains by : Ravi R. Montenegro
Download or read book Mathematical Aspects of Mixing Times in Markov Chains written by Ravi R. Montenegro and published by Now Publishers Inc. This book was released on 2006 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Aspects of Mixing Times in Markov Chains is a comprehensive, well-written review of the subject that will be of interest to researchers and students in computer and mathematical sciences.
Book Synopsis Self-Learning Control of Finite Markov Chains by : A S Poznyak
Download or read book Self-Learning Control of Finite Markov Chains written by A S Poznyak and published by CRC Press. This book was released on 2019-08-30 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a number of new and potentially useful self-learning (adaptive) control algorithms and theoretical as well as practical results for both unconstrained and constrained finite Markov chains-efficiently processing new information by adjusting the control strategies directly or indirectly.
Book Synopsis Distribution Theory of Runs and Patterns and Its Applications by : James C. Fu
Download or read book Distribution Theory of Runs and Patterns and Its Applications written by James C. Fu and published by World Scientific. This book was released on 2003 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous, comprehensive introduction to the finite Markov chain imbedding technique for studying the distributions of runs and patterns from a unified and intuitive viewpoint, away from the lines of traditional combinatorics.
Book Synopsis Probability and Random Processes for Electrical and Computer Engineers by : John A. Gubner
Download or read book Probability and Random Processes for Electrical and Computer Engineers written by John A. Gubner and published by Cambridge University Press. This book was released on 2006-06-01 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of probability is a powerful tool that helps electrical and computer engineers to explain, model, analyze, and design the technology they develop. The text begins at the advanced undergraduate level, assuming only a modest knowledge of probability, and progresses through more complex topics mastered at graduate level. The first five chapters cover the basics of probability and both discrete and continuous random variables. The later chapters have a more specialized coverage, including random vectors, Gaussian random vectors, random processes, Markov Chains, and convergence. Describing tools and results that are used extensively in the field, this is more than a textbook; it is also a reference for researchers working in communications, signal processing, and computer network traffic analysis. With over 300 worked examples, some 800 homework problems, and sections for exam preparation, this is an essential companion for advanced undergraduate and graduate students. Further resources for this title, including solutions (for Instructors only), are available online at www.cambridge.org/9780521864701.
Book Synopsis Continuous-Time Markov Chains and Applications by : G. George Yin
Download or read book Continuous-Time Markov Chains and Applications written by G. George Yin and published by Springer Science & Business Media. This book was released on 2012-11-14 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic treatment of singularly perturbed systems that naturally arise in control and optimization, queueing networks, manufacturing systems, and financial engineering. It presents results on asymptotic expansions of solutions of Komogorov forward and backward equations, properties of functional occupation measures, exponential upper bounds, and functional limit results for Markov chains with weak and strong interactions. To bridge the gap between theory and applications, a large portion of the book is devoted to applications in controlled dynamic systems, production planning, and numerical methods for controlled Markovian systems with large-scale and complex structures in the real-world problems. This second edition has been updated throughout and includes two new chapters on asymptotic expansions of solutions for backward equations and hybrid LQG problems. The chapters on analytic and probabilistic properties of two-time-scale Markov chains have been almost completely rewritten and the notation has been streamlined and simplified. This book is written for applied mathematicians, engineers, operations researchers, and applied scientists. Selected material from the book can also be used for a one semester advanced graduate-level course in applied probability and stochastic processes.
Download or read book Markov Chains written by Pierre Bremaud and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.
Book Synopsis Introduction to Stochastic Processes by : Gregory F. Lawler
Download or read book Introduction to Stochastic Processes written by Gregory F. Lawler and published by CRC Press. This book was released on 2018-10-03 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.
Book Synopsis Introduction to Probability, Statistics, and Random Processes by : Hossein Pishro-Nik
Download or read book Introduction to Probability, Statistics, and Random Processes written by Hossein Pishro-Nik and published by . This book was released on 2014-08-15 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.
Book Synopsis Markov Chains and Stochastic Stability by : Sean Meyn
Download or read book Markov Chains and Stochastic Stability written by Sean Meyn and published by Cambridge University Press. This book was released on 2009-04-02 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.
Book Synopsis Introduction to Stochastic Processes with R by : Robert P. Dobrow
Download or read book Introduction to Stochastic Processes with R written by Robert P. Dobrow and published by John Wiley & Sons. This book was released on 2016-03-07 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.
Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton
Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Book Synopsis Markov Chains: Models, Algorithms and Applications by : Wai-Ki Ching
Download or read book Markov Chains: Models, Algorithms and Applications written by Wai-Ki Ching and published by Springer Science & Business Media. This book was released on 2006-06-05 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov chains are a particularly powerful and widely used tool for analyzing a variety of stochastic (probabilistic) systems over time. This monograph will present a series of Markov models, starting from the basic models and then building up to higher-order models. Included in the higher-order discussions are multivariate models, higher-order multivariate models, and higher-order hidden models. In each case, the focus is on the important kinds of applications that can be made with the class of models being considered in the current chapter. Special attention is given to numerical algorithms that can efficiently solve the models. Therefore, Markov Chains: Models, Algorithms and Applications outlines recent developments of Markov chain models for modeling queueing sequences, Internet, re-manufacturing systems, reverse logistics, inventory systems, bio-informatics, DNA sequences, genetic networks, data mining, and many other practical systems.