Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains

Download Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031640918
Total Pages : 337 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains by : Mikhail Borsuk

Download or read book Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains written by Mikhail Borsuk and published by Springer Nature. This book was released on with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains

Download Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034604777
Total Pages : 223 pages
Book Rating : 4.0/5 (346 download)

DOWNLOAD NOW!


Book Synopsis Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains by : Mikhail Borsuk

Download or read book Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains written by Mikhail Borsuk and published by Springer Science & Business Media. This book was released on 2010-09-02 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates the behaviour of weak solutions to the elliptic transmisssion problem in a neighborhood of boundary singularities: angular and conic points or edges, considering this problem both for linear and quasi-linear equations.

Numerical Analysis and Its Applications

Download Numerical Analysis and Its Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642004636
Total Pages : 646 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Numerical Analysis and Its Applications by : Svetozar Margenov

Download or read book Numerical Analysis and Its Applications written by Svetozar Margenov and published by Springer Science & Business Media. This book was released on 2009-03-09 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Conference on Numerical Analysis and Its Applications, NAA 2008, held in Lozenetz, Bulgaria in June 2008. The 61 revised full papers presented together with 13 invited papers were carefully selected during two rounds of reviewing and improvement. The papers address all current aspects of numerical analysis and discuss a wide range of problems concerning recent achievements in physics, chemistry, engineering, and economics. A special focus is given to numerical approximation and computational geometry, numerical linear algebra and numerical solution of transcendental equations, numerical methods for differential equations, numerical modeling, and high performance scientific computing.

Elliptic Problems in Nonsmooth Domains

Download Elliptic Problems in Nonsmooth Domains PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611972027
Total Pages : 426 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Problems in Nonsmooth Domains by : Pierre Grisvard

Download or read book Elliptic Problems in Nonsmooth Domains written by Pierre Grisvard and published by SIAM. This book was released on 2011-10-20 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published: Boston: Pitman Advanced Pub. Program, 1985.

Elliptic Boundary Value Problems on Corner Domains

Download Elliptic Boundary Value Problems on Corner Domains PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540459421
Total Pages : 266 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Boundary Value Problems on Corner Domains by : Monique Dauge

Download or read book Elliptic Boundary Value Problems on Corner Domains written by Monique Dauge and published by Springer. This book was released on 2006-11-14 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph focusses on a large class of variational elliptic problems with mixed boundary conditions on domains with various corner singularities, edges, polyhedral vertices, cracks, slits. In a natural functional framework (ordinary Sobolev Hilbert spaces) Fredholm and semi-Fredholm properties of induced operators are completely characterized. By specially choosing the classes of operators and domains and the functional spaces used, precise and general results may be obtained on the smoothness and asymptotics of solutions. A new type of characteristic condition is introduced which involves the spectrum of associated operator pencils and some ideals of polynomials satisfying some boundary conditions on cones. The methods involve many perturbation arguments and a new use of Mellin transform. Basic knowledge about BVP on smooth domains in Sobolev spaces is the main prerequisite to the understanding of this book. Readers interested in the general theory of corner domains will find here a new basic theory (new approaches and results) as well as a synthesis of many already known results; those who need regularity conditions and descriptions of singularities for numerical analysis will find precise statements and also a means to obtain further one in many explicit situtations.

Oblique Derivative Problems for Elliptic Equations in Conical Domains

Download Oblique Derivative Problems for Elliptic Equations in Conical Domains PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031283813
Total Pages : 334 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Oblique Derivative Problems for Elliptic Equations in Conical Domains by : Mikhail Borsuk

Download or read book Oblique Derivative Problems for Elliptic Equations in Conical Domains written by Mikhail Borsuk and published by Springer Nature. This book was released on 2023-05-31 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of our book is the investigation of the behavior of strong and weak solutions to the regular oblique derivative problems for second order elliptic equations, linear and quasi-linear, in the neighborhood of the boundary singularities. The main goal is to establish the precise exponent of the solution decrease rate and under the best possible conditions. The question on the behavior of solutions of elliptic boundary value problems near boundary singularities is of great importance for its many applications, e.g., in hydrodynamics, aerodynamics, fracture mechanics, in the geodesy etc. Only few works are devoted to the regular oblique derivative problems for second order elliptic equations in non-smooth domains. All results are given with complete proofs. The monograph will be of interest to graduate students and specialists in elliptic boundary value problems and their applications.

Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics

Download Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303050302X
Total Pages : 525 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics by : Victor A. Sadovnichiy

Download or read book Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics written by Victor A. Sadovnichiy and published by Springer Nature. This book was released on 2020-11-24 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the latest approaches and methods in fundamental mathematics and mechanics, and discusses the practical application of abstract mathematical approaches, such as differential geometry, and differential and difference equations in solid mechanics, hydrodynamics, aerodynamics, optimization, decision-making theory and control theory. Featuring selected contributions to the open seminar series of Lomonosov Moscow State University and Igor Sikorsky Kyiv Polytechnic Institute by mathematicians from China, Germany, France, Italy, Spain, Russia, Ukraine and the USA, the book will appeal to mathematicians and engineers working at the interface of these fields

Boundary Value Problems and Integral Equations in Nonsmooth Domains

Download Boundary Value Problems and Integral Equations in Nonsmooth Domains PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780824793203
Total Pages : 320 pages
Book Rating : 4.7/5 (932 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems and Integral Equations in Nonsmooth Domains by : Martin Costabel

Download or read book Boundary Value Problems and Integral Equations in Nonsmooth Domains written by Martin Costabel and published by CRC Press. This book was released on 1994-10-25 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the International Conference on Boundary Value Problems and lntegral Equations In Nonsmooth Domains held recently in Luminy, France, this work contains strongly interrelated, refereed papers that detail the latest findings in the fields of nonsmooth domains and corner singularities. Two-dimensional polygonal or Lipschitz domains, three-dimensional polyhedral corners and edges, and conical points in any dimension are examined.

Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains

Download Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080461735
Total Pages : 538 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains by : Michail Borsuk

Download or read book Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains written by Michail Borsuk and published by Elsevier. This book was released on 2006-01-12 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.Key features:* New the Hardy – Friedrichs – Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m – Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.

Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains

Download Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031058216
Total Pages : 186 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains by : Hengguang Li

Download or read book Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains written by Hengguang Li and published by Springer Nature. This book was released on 2022-09-01 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops a class of graded finite element methods to solve singular elliptic boundary value problems in two- and three-dimensional domains. It provides an approachable and self-contained presentation of the topic, including both the mathematical theory and numerical tools necessary to address the major challenges imposed by the singular solution. Moreover, by focusing upon second-order equations with constant coefficients, it manages to derive explicit results that are accessible to the broader computation community. Although written with mathematics graduate students and researchers in mind, this book is also relevant to applied and computational mathematicians, scientists, and engineers in numerical methods who may encounter singular problems.

Proceedings of the St. Petersburg Mathematical Society

Download Proceedings of the St. Petersburg Mathematical Society PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821890752
Total Pages : 248 pages
Book Rating : 4.8/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the St. Petersburg Mathematical Society by : Nina Nikolaevna Uralceva (Mathematikerin.)

Download or read book Proceedings of the St. Petersburg Mathematical Society written by Nina Nikolaevna Uralceva (Mathematikerin.) and published by American Mathematical Soc.. This book was released on with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations

Download Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821827278
Total Pages : 449 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations by : Vladimir Kozlov

Download or read book Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations written by Vladimir Kozlov and published by American Mathematical Soc.. This book was released on 2001 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the analysis of eigenvalues and eigenfunctions that describe singularities of solutions to elliptic boundary value problems in domains with corners and edges. The authors treat both classical problems of mathematical physics and general elliptic boundary value problems. The volume is divided into two parts: The first is devoted to the power-logarithmic singularities of solutions to classical boundary value problems of mathematical physics. The second deals with similar singularities for higher order elliptic equations and systems. Chapter 1 collects basic facts concerning operator pencils acting in a pair of Hilbert spaces. Related properties of ordinary differential equations with constant operator coefficients are discussed and connections with the theory of general elliptic boundary value problems in domains with conic vertices are outlined. New results are presented. Chapter 2 treats the Laplace operator as a starting point and a model for the subsequent study of angular and conic singularities of solutions. Chapter 3 considers the Dirichlet boundary condition beginning with the plane case and turning to the space problems. Chapter 4 investigates some mixed boundary conditions. The Stokes system is discussed in Chapters 5 and 6, and Chapter 7 concludes with the Dirichlet problem for the polyharmonic operator. Chapter 8 studies the Dirichlet problem for general elliptic differential equations of order 2m in an angle. In Chapter 9, an asymptotic formula for the distribution of eigenvalues of operator pencils corresponding to general elliptic boundary value problems in an angle is obtained. Chapters 10 and 11 discuss the Dirichlet problem for elliptic systems of differential equations of order 2 in an n-dimensional cone. Chapter 12 studies the Neumann problem for general elliptic systems, in particular with eigenvalues of the corresponding operator pencil in the strip $\mid {\Re} \lambda - m + /2n \mid \leq 1/2$. It is shown that only integer numbers contained in this strip are eigenvalues. Applications are placed within chapter introductions and as special sections at the end of chapters. Prerequisites include standard PDE and functional analysis courses.

Adaptive Methods — Algorithms, Theory and Applications

Download Adaptive Methods — Algorithms, Theory and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3663142469
Total Pages : 281 pages
Book Rating : 4.6/5 (631 download)

DOWNLOAD NOW!


Book Synopsis Adaptive Methods — Algorithms, Theory and Applications by : W. Hackbusch

Download or read book Adaptive Methods — Algorithms, Theory and Applications written by W. Hackbusch and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: The GAMM Committee for "Efficient Numerical Methods for Partial Differential Equations" organizes workshops on subjects concerning the algorithmical treat ment of partial differential equations. The topics are discretization methods like the finite element and finite volume method for various types of applications in structural and fluid mechanics. Particular attention is devoted to advanced solu tion techniques. th The series of such workshops was continued in 1993, January 22-24, with the 9 Kiel-Seminar on the special topic "Adaptive Methods Algorithms, Theory and Applications" at the Christian-Albrechts-University of Kiel. The seminar was attended by 76 scientists from 7 countries and 23 lectures were given. The list of topics contained general lectures on adaptivity, special discretization schemes, error estimators, space-time adaptivity, adaptive solvers, multi-grid me thods, wavelets, and parallelization. Special thanks are due to Michael Heisig, who carefully compiled the contribu tions to this volume. November 1993 Wolfgang Hackbusch Gabriel Wittum v Contents Page A. AUGE, G. LUBE, D. WEISS: Galerkin/Least-Squares-FEM and Ani- tropic Mesh Refinement. 1 P. BASTIAN, G. WmUM : Adaptive Multigrid Methods: The UG Concept. 17 R. BEINERT, D. KRONER: Finite Volume Methods with Local Mesh Alignment in 2-D. 38 T. BONK: A New Algorithm for Multi-Dimensional Adaptive Nume- cal Quadrature. 54 F.A. BORNEMANN: Adaptive Solution of One-Dimensional Scalar Conservation Laws with Convex Flux. 69 J. CANU, H. RITZDORF : Adaptive, Block-Structured Multigrid on Local Memory Machines. 84 S. DAHLKE, A. KUNaTH: Biorthogonal Wavelets and Multigrid. 99 B. ERDMANN, R.H.W. HOPPE, R.

Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids

Download Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642599389
Total Pages : 477 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids by : John M. Ball

Download or read book Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids written by John M. Ball and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A traditional way to honor distinguished scientists is to combine collections of papers solicited from friendly colleagues into dedicatory volumes. To honor our friend and colleague Mort Gurtin on the occasion of his sixty-fifth birthday, we followed a surer path to produce a work of intrinsic and lasting scientific value: We collected pa pers that we deemed seminal in the field of evolving phase interfaces in solids, a field to which Mort Gurtin himself has made fundamental contributions. Our failure for lack of space to include in this volume every paper of major significance is mitigated by the ma gisterial introduction prepared by Eliot Fried, which assesses the contributions of nu merous works. We hope that this collection will prove useful and stimulating to both researchers and students in this exciting field. August 1998 JohnM. Ball David Kinderlehrer Paulo Podio-Guidugli Marshall Slemrod Contents Introduction: Fifty Years of Research on Evolving Phase Interfaces By Eliot Fried. 0 •••••••••••••••••••••••••••••••••••••••••••••••• 0 ••••• 1 I. Papers on Materials Science Surface Tension as a Motivation for Sintering By C. Herring 33 Two-Dimensional Motion of Idealized Grain Boundaries By W. W. Mullins 0 ••••••••••• 0 ••••••••••••••••••• 70 Morphological. Stability of a Particle Growing by Diffusion or Heat Flow By w. w. Mullins and R. F. Sekerka 75 Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics By J. D. Eshelby 82 The Interactions of Composition and Stress in Crystalline Solids By F. e. Larche and 1. W. Cahn 120 II.

Elliptic Equations in Polyhedral Domains

Download Elliptic Equations in Polyhedral Domains PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821849832
Total Pages : 618 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Equations in Polyhedral Domains by : V. G. Maz_i_a

Download or read book Elliptic Equations in Polyhedral Domains written by V. G. Maz_i_a and published by American Mathematical Soc.. This book was released on 2010-04-22 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first monograph which systematically treats elliptic boundary value problems in domains of polyhedral type. The authors mainly describe their own recent results focusing on the Dirichlet problem for linear strongly elliptic systems of arbitrary order, Neumann and mixed boundary value problems for second order systems, and on boundary value problems for the stationary Stokes and Navier-Stokes systems. A feature of the book is the systematic use of Green's matrices. Using estimates for the elements of these matrices, the authors obtain solvability and regularity theorems for the solutions in weighted and non-weighted Sobolev and Holder spaces. Some classical problems of mathematical physics (Laplace and biharmonic equations, Lame system) are considered as examples. Furthermore, the book contains maximum modulus estimates for the solutions and their derivatives. The exposition is self-contained, and an introductory chapter provides background material on the theory of elliptic boundary value problems in domains with smooth boundaries and in domains with conical points. The book is destined for graduate students and researchers working in elliptic partial differential equations and applications.

Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities

Download Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461333385
Total Pages : 488 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities by : Zi Cai Li

Download or read book Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities written by Zi Cai Li and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.

Advanced Boundary Element Methods

Download Advanced Boundary Element Methods PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319920014
Total Pages : 661 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Advanced Boundary Element Methods by : Joachim Gwinner

Download or read book Advanced Boundary Element Methods written by Joachim Gwinner and published by Springer. This book was released on 2018-07-28 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the mathematical analysis of the numerical solution of boundary integral equations treating boundary value, transmission and contact problems arising in elasticity, acoustic and electromagnetic scattering. It serves as the mathematical foundation of the boundary element methods (BEM) both for static and dynamic problems. The book presents a systematic approach to the variational methods for boundary integral equations including the treatment with variational inequalities for contact problems. It also features adaptive BEM, hp-version BEM, coupling of finite and boundary element methods – efficient computational tools that have become extremely popular in applications. Familiarizing readers with tools like Mellin transformation and pseudodifferential operators as well as convex and nonsmooth analysis for variational inequalities, it concisely presents efficient, state-of-the-art boundary element approximations and points to up-to-date research. The authors are well known for their fundamental work on boundary elements and related topics, and this book is a major contribution to the modern theory of the BEM (especially for error controlled adaptive methods and for unilateral contact and dynamic problems) and is a valuable resource for applied mathematicians, engineers, scientists and graduate students.