Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Intelligent Computer Vision And Image Processing
Download Intelligent Computer Vision And Image Processing full books in PDF, epub, and Kindle. Read online Intelligent Computer Vision And Image Processing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Intelligent Computer Vision and Image Processing: Innovation, Application, and Design by : Sarfraz, Muhammad
Download or read book Intelligent Computer Vision and Image Processing: Innovation, Application, and Design written by Sarfraz, Muhammad and published by IGI Global. This book was released on 2013-04-30 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Innovations in computer vision technology continue to advance the applications and design of image processing and its influence on multimedia applications. Intelligent Computer Vision and Image Processing: Innovation, Application, and Design provides methods and research on various disciplines related to the science and technology of machines. This reference source is essential for academicians, researchers, and practitioners interested in the latest developments and innovations in computer science, education, and security.
Book Synopsis Computer Vision and Image Processing in Intelligent Systems and Multimedia Technologies by : Sarfraz, Muhammad
Download or read book Computer Vision and Image Processing in Intelligent Systems and Multimedia Technologies written by Sarfraz, Muhammad and published by IGI Global. This book was released on 2014-04-30 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fields of computer vision and image processing are constantly evolving as new research and applications in these areas emerge. Staying abreast of the most up-to-date developments in this field is necessary in order to promote further research and apply these developments in real-world settings. Computer Vision and Image Processing in Intelligent Systems and Multimedia Technologies features timely and informative research on the design and development of computer vision and image processing applications in intelligent agents as well as in multimedia technologies. Covering a diverse set of research in these areas, this publication is ideally designed for use by academicians, technology professionals, students, and researchers interested in uncovering the latest innovations in the field.
Book Synopsis Handbook of Image Processing and Computer Vision by : Arcangelo Distante
Download or read book Handbook of Image Processing and Computer Vision written by Arcangelo Distante and published by Springer Nature. This book was released on 2020-05-28 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: Across three volumes, the Handbook of Image Processing and Computer Vision presents a comprehensive review of the full range of topics that comprise the field of computer vision, from the acquisition of signals and formation of images, to learning techniques for scene understanding. The authoritative insights presented within cover all aspects of the sensory subsystem required by an intelligent system to perceive the environment and act autonomously. Volume 1 (From Energy to Image) examines the formation, properties, and enhancement of a digital image. Topics and features: • Describes the fundamental processes in the field of artificial vision that enable the formation of digital images from light energy • Covers light propagation, color perception, optical systems, and the analog-to-digital conversion of the signal • Discusses the information recorded in a digital image, and the image processing algorithms that can improve the visual qualities of the image • Reviews boundary extraction algorithms, key linear and geometric transformations, and techniques for image restoration • Presents a selection of different image segmentation algorithms, and of widely-used algorithms for the automatic detection of points of interest • Examines important algorithms for object recognition, texture analysis, 3D reconstruction, motion analysis, and camera calibration • Provides an introduction to four significant types of neural network, namely RBF, SOM, Hopfield, and deep neural networks This all-encompassing survey offers a complete reference for all students, researchers, and practitioners involved in developing intelligent machine vision systems. The work is also an invaluable resource for professionals within the IT/software and electronics industries involved in machine vision, imaging, and artificial intelligence. Dr. Cosimo Distante is a Research Scientist in Computer Vision and Pattern Recognition in the Institute of Applied Sciences and Intelligent Systems (ISAI) at the Italian National Research Council (CNR). Dr. Arcangelo Distante is a researcher and the former Director of the Institute of Intelligent Systems for Automation (ISSIA) at the CNR. His research interests are in the fields of Computer Vision, Pattern Recognition, Machine Learning, and Neural Computation.
Book Synopsis Advancements in Computer Vision and Image Processing by : Garcia-Rodriguez, Jose
Download or read book Advancements in Computer Vision and Image Processing written by Garcia-Rodriguez, Jose and published by IGI Global. This book was released on 2018-04-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in computer vision and image processing has grown in recent years with the advancement of everyday technologies such as smartphones, computer games, and social robotics. These advancements have allowed for advanced algorithms that have improved the processing capabilities of these technologies. Advancements in Computer Vision and Image Processing is a critical scholarly resource that explores the impact of new technologies on computer vision and image processing methods in everyday life. Featuring coverage on a wide range of topics including 3D visual localization, cellular automata-based structures, and eye and face recognition, this book is geared toward academicians, technology professionals, engineers, students, and researchers seeking current research on the development of sophisticated algorithms to process images and videos in real time.
Book Synopsis Machine Learning for OpenCV by : Michael Beyeler
Download or read book Machine Learning for OpenCV written by Michael Beyeler and published by Packt Publishing Ltd. This book was released on 2017-07-14 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expand your OpenCV knowledge and master key concepts of machine learning using this practical, hands-on guide. About This Book Load, store, edit, and visualize data using OpenCV and Python Grasp the fundamental concepts of classification, regression, and clustering Understand, perform, and experiment with machine learning techniques using this easy-to-follow guide Evaluate, compare, and choose the right algorithm for any task Who This Book Is For This book targets Python programmers who are already familiar with OpenCV; this book will give you the tools and understanding required to build your own machine learning systems, tailored to practical real-world tasks. What You Will Learn Explore and make effective use of OpenCV's machine learning module Learn deep learning for computer vision with Python Master linear regression and regularization techniques Classify objects such as flower species, handwritten digits, and pedestrians Explore the effective use of support vector machines, boosted decision trees, and random forests Get acquainted with neural networks and Deep Learning to address real-world problems Discover hidden structures in your data using k-means clustering Get to grips with data pre-processing and feature engineering In Detail Machine learning is no longer just a buzzword, it is all around us: from protecting your email, to automatically tagging friends in pictures, to predicting what movies you like. Computer vision is one of today's most exciting application fields of machine learning, with Deep Learning driving innovative systems such as self-driving cars and Google's DeepMind. OpenCV lies at the intersection of these topics, providing a comprehensive open-source library for classic as well as state-of-the-art computer vision and machine learning algorithms. In combination with Python Anaconda, you will have access to all the open-source computing libraries you could possibly ask for. Machine learning for OpenCV begins by introducing you to the essential concepts of statistical learning, such as classification and regression. Once all the basics are covered, you will start exploring various algorithms such as decision trees, support vector machines, and Bayesian networks, and learn how to combine them with other OpenCV functionality. As the book progresses, so will your machine learning skills, until you are ready to take on today's hottest topic in the field: Deep Learning. By the end of this book, you will be ready to take on your own machine learning problems, either by building on the existing source code or developing your own algorithm from scratch! Style and approach OpenCV machine learning connects the fundamental theoretical principles behind machine learning to their practical applications in a way that focuses on asking and answering the right questions. This book walks you through the key elements of OpenCV and its powerful machine learning classes, while demonstrating how to get to grips with a range of models.
Book Synopsis Artificial Intelligence and Computer Vision by : Huimin Lu
Download or read book Artificial Intelligence and Computer Vision written by Huimin Lu and published by Springer. This book was released on 2016-11-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book presents essential findings in the research fields of artificial intelligence and computer vision, with a primary focus on new research ideas and results for mathematical problems involved in computer vision systems. The book provides an international forum for researchers to summarize the most recent developments and ideas in the field, with a special emphasis on the technical and observational results obtained in the past few years.
Book Synopsis Intelligent Image Processing in Prolog by : Bruce G. Batchelor
Download or read book Intelligent Image Processing in Prolog written by Bruce G. Batchelor and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a slow and somewhat tentative beginning, machine vision systems are now finding widespread use in industry. So far, there have been four clearly discernible phases in their development, based upon the types of images processed and how that processing is performed: (1) Binary (two level) images, processing in software (2) Grey-scale images, processing in software (3) Binary or grey-scale images processed in fast, special-purpose hardware (4) Coloured/multi-spectral images Third-generation vision systems are now commonplace, although a large number of binary and software-based grey-scale processing systems are still being sold. At the moment, colour image processing is commercially much less significant than the other three and this situation may well remain for some time, since many industrial artifacts are nearly monochrome and the use of colour increases the cost of the equipment significantly. A great deal of colour image processing is a straightforward extension of standard grey-scale methods. Industrial applications of machine vision systems can also be sub divided, this time into two main areas, which have largely retained distinct identities: (i) Automated Visual Inspection (A VI) (ii) Robot Vision (RV) This book is about a fifth generation of industrial vision systems, in which this distinction, based on applications, is blurred and the processing is marked by being much smarter (i. e. more "intelligent") than in the other four generations.
Book Synopsis Research Developments in Computer Vision and Image Processing by : Rajeev Srivastava
Download or read book Research Developments in Computer Vision and Image Processing written by Rajeev Srivastava and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book brings together various research methodologies and trends in emerging areas of application of computer vision and image processing for those interested in the research developments of this rapidly growing field"--
Book Synopsis Emerging Technologies in Intelligent Applications for Image and Video Processing by : Santhi, V.
Download or read book Emerging Technologies in Intelligent Applications for Image and Video Processing written by Santhi, V. and published by IGI Global. This book was released on 2016-01-07 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image and Video Processing is an active area of research due to its potential applications for solving real-world problems. Integrating computational intelligence to analyze and interpret information from image and video technologies is an essential step to processing and applying multimedia data. Emerging Technologies in Intelligent Applications for Image and Video Processing presents the most current research relating to multimedia technologies including video and image restoration and enhancement as well as algorithms used for image and video compression, indexing and retrieval processes, and security concerns. Featuring insight from researchers from around the world, this publication is designed for use by engineers, IT specialists, researchers, and graduate level students.
Book Synopsis Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020) by : Aboul-Ella Hassanien
Download or read book Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020) written by Aboul-Ella Hassanien and published by Springer Nature. This book was released on 2020-03-23 with total page 880 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 1st International Conference on Artificial Intelligence and Computer Visions (AICV 2020), which took place in Cairo, Egypt, from April 8 to 10, 2020. This international conference, which highlighted essential research and developments in the fields of artificial intelligence and computer visions, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into sections, covering the following topics: swarm-based optimization mining and data analysis, deep learning and applications, machine learning and applications, image processing and computer vision, intelligent systems and applications, and intelligent networks.
Book Synopsis Machine Learning for Computer Vision by : Roberto Cipolla
Download or read book Machine Learning for Computer Vision written by Roberto Cipolla and published by Springer. This book was released on 2012-07-27 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school. The chapters provide an in-depth overview of challenging areas with key references to the existing literature.
Book Synopsis Handbook of Image Processing and Computer Vision by : Arcangelo Distante
Download or read book Handbook of Image Processing and Computer Vision written by Arcangelo Distante and published by Springer Nature. This book was released on 2020-05-30 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Across three volumes, the Handbook of Image Processing and Computer Vision presents a comprehensive review of the full range of topics that comprise the field of computer vision, from the acquisition of signals and formation of images, to learning techniques for scene understanding. The authoritative insights presented within cover all aspects of the sensory subsystem required by an intelligent system to perceive the environment and act autonomously. Volume 2 (From Image to Pattern) examines image transforms, image restoration, and image segmentation. Topics and features: • Describes the fundamental processes in the field of artificial vision that enable the formation of digital images from light energy • Covers light propagation, color perception, optical systems, and the analog-to-digital conversion of the signal • Discusses the information recorded in a digital image, and the image processing algorithms that can improve the visual qualities of the image • Reviews boundary extraction algorithms, key linear and geometric transformations, and techniques for image restoration • Presents a selection of different image segmentation algorithms, and of widely-used algorithms for the automatic detection of points of interest • Examines important algorithms for object recognition, texture analysis, 3D reconstruction, motion analysis, and camera calibration • Provides an introduction to four significant types of neural network, namely RBF, SOM, Hopfield, and deep neural networks This all-encompassing survey offers a complete reference for all students, researchers, and practitioners involved in developing intelligent machine vision systems. The work is also an invaluable resource for professionals within the IT/software and electronics industries involved in machine vision, imaging, and artificial intelligence. Dr. Cosimo Distante is a Research Scientist in Computer Vision and Pattern Recognition in the Institute of Applied Sciences and Intelligent Systems (ISAI) at the Italian National Research Council (CNR). Dr. Arcangelo Distante is a researcher and the former Director of the Institute of Intelligent Systems for Automation (ISSIA) at the CNR. His research interests are in the fields of Computer Vision, Pattern Recognition, Machine Learning, and Neural Computation.
Book Synopsis Challenges and Applications for Implementing Machine Learning in Computer Vision by : Kashyap, Ramgopal
Download or read book Challenges and Applications for Implementing Machine Learning in Computer Vision written by Kashyap, Ramgopal and published by IGI Global. This book was released on 2019-10-04 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.
Book Synopsis Advanced Machine Vision Paradigms for Medical Image Analysis by : Tapan K. Gandhi
Download or read book Advanced Machine Vision Paradigms for Medical Image Analysis written by Tapan K. Gandhi and published by Academic Press. This book was released on 2020-08-11 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs. - Explores major emerging trends in technology which are supporting the current advancement of medical image analysis with the help of computational intelligence - Highlights the advancement of conventional approaches in the field of medical image processing - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques, as well as their applications in medical image analysis
Book Synopsis Advances in Soft Computing and Machine Learning in Image Processing by : Aboul Ella Hassanien
Download or read book Advances in Soft Computing and Machine Learning in Image Processing written by Aboul Ella Hassanien and published by Springer. This book was released on 2017-10-13 with total page 711 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of the latest applications of methods from soft computing and machine learning in image processing. It explores different areas ranging from image segmentation to the object recognition using complex approaches, and includes the theory of the methodologies used to provide an overview of the application of these tools in image processing. The material has been compiled from a scientific perspective, and the book is primarily intended for undergraduate and postgraduate science, engineering, and computational mathematics students. It can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence, and is a valuable resource for researchers in the evolutionary computation, artificial intelligence and image processing communities.
Book Synopsis Computer Vision In Medical Imaging by : Chi Hau Chen
Download or read book Computer Vision In Medical Imaging written by Chi Hau Chen and published by World Scientific. This book was released on 2013-11-18 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.
Book Synopsis Machine Learning in Computer Vision by : Nicu Sebe
Download or read book Machine Learning in Computer Vision written by Nicu Sebe and published by Springer Science & Business Media. This book was released on 2005-10-04 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.