Algebraic Integrability, Painlevé Geometry and Lie Algebras

Download Algebraic Integrability, Painlevé Geometry and Lie Algebras PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 366205650X
Total Pages : 487 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Integrability, Painlevé Geometry and Lie Algebras by : Mark Adler

Download or read book Algebraic Integrability, Painlevé Geometry and Lie Algebras written by Mark Adler and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals. The main thrust of the book is to show how algebraic geometry, Lie theory and Painlevé analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory. The book is meant to be reasonably self-contained and presents numerous examples. The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book. The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.

Integrable Systems

Download Integrable Systems PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 : 0199676771
Total Pages : 148 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Integrable Systems by : N.J. Hitchin

Download or read book Integrable Systems written by N.J. Hitchin and published by Oxford University Press, USA. This book was released on 2013-03-14 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors, this book has its origins in a lecture series given by the internationally renowned authors. Written in an accessible, informal style, it fills a gap in the existing literature.

Integrability, Quantization, and Geometry: I. Integrable Systems

Download Integrability, Quantization, and Geometry: I. Integrable Systems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470455919
Total Pages : 516 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Integrability, Quantization, and Geometry: I. Integrable Systems by : Sergey Novikov

Download or read book Integrability, Quantization, and Geometry: I. Integrable Systems written by Sergey Novikov and published by American Mathematical Soc.. This book was released on 2021-04-12 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Symmetries, Integrable Systems and Representations

Download Symmetries, Integrable Systems and Representations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447148630
Total Pages : 633 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Symmetries, Integrable Systems and Representations by : Kenji Iohara

Download or read book Symmetries, Integrable Systems and Representations written by Kenji Iohara and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.

Differential Geometry and Integrable Systems

Download Differential Geometry and Integrable Systems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821829386
Total Pages : 370 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Integrable Systems by : Martin A. Guest

Download or read book Differential Geometry and Integrable Systems written by Martin A. Guest and published by American Mathematical Soc.. This book was released on 2002 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced byintegrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generallyreveals previously unnoticed symmetries and can lead to surprisingly explicit solutions. Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and willserve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference also available from the AMS is Integrable Systems,Topology, and Physics, Volume 309 CONM/309in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.

Integrable Systems in the realm of Algebraic Geometry

Download Integrable Systems in the realm of Algebraic Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662215357
Total Pages : 226 pages
Book Rating : 4.6/5 (622 download)

DOWNLOAD NOW!


Book Synopsis Integrable Systems in the realm of Algebraic Geometry by : Pol Vanhaecke

Download or read book Integrable Systems in the realm of Algebraic Geometry written by Pol Vanhaecke and published by Springer. This book was released on 2013-11-11 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrable systems are related to algebraic geometry in many different ways. This book deals with some aspects of this relation, the main focus being on the algebraic geometry of the level manifolds of integrable systems and the construction of integrable systems, starting from algebraic geometric data. For a rigorous account of these matters, integrable systems are defined on affine algebraic varieties rather than on smooth manifolds. The exposition is self-contained and is accessible at the graduate level; in particular, prior knowledge of integrable systems is not assumed.

Integrable Systems and Algebraic Geometry: Volume 1

Download Integrable Systems and Algebraic Geometry: Volume 1 PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110880358X
Total Pages : 421 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Integrable Systems and Algebraic Geometry: Volume 1 by : Ron Donagi

Download or read book Integrable Systems and Algebraic Geometry: Volume 1 written by Ron Donagi and published by Cambridge University Press. This book was released on 2020-04-02 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. This first volume covers a wide range of areas related to integrable systems, often emphasizing the deep connections with algebraic geometry. Common themes include theta functions and Abelian varieties, Lax equations, integrable hierarchies, Hamiltonian flows and difference operators. These powerful tools are applied to spinning top, Hitchin, Painleve and many other notable special equations.

Integrability of Dynamical Systems: Algebra and Analysis

Download Integrability of Dynamical Systems: Algebra and Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811042268
Total Pages : 390 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Integrability of Dynamical Systems: Algebra and Analysis by : Xiang Zhang

Download or read book Integrability of Dynamical Systems: Algebra and Analysis written by Xiang Zhang and published by Springer. This book was released on 2017-03-30 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.

From Quantum Cohomology to Integrable Systems

Download From Quantum Cohomology to Integrable Systems PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191606960
Total Pages : 336 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis From Quantum Cohomology to Integrable Systems by : Martin A. Guest

Download or read book From Quantum Cohomology to Integrable Systems written by Martin A. Guest and published by OUP Oxford. This book was released on 2008-03-13 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.

Spinning Tops

Download Spinning Tops PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521779197
Total Pages : 156 pages
Book Rating : 4.7/5 (791 download)

DOWNLOAD NOW!


Book Synopsis Spinning Tops by : M. Audin

Download or read book Spinning Tops written by M. Audin and published by Cambridge University Press. This book was released on 1999-11-13 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. A modern view of the role played by algebraic geometry has been established iby many mathematicians. This book presents some of these techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, whilst in appendices the general, abstract theory is described. The methods are given a topological application to the study of Liouville tori and their bifurcations. The book is based on courses for graduate students given by the author at Strasbourg University but the wealth of original ideas will make it also appeal to researchers.

Darboux Transformations in Integrable Systems

Download Darboux Transformations in Integrable Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402030886
Total Pages : 317 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Darboux Transformations in Integrable Systems by : Chaohao Gu

Download or read book Darboux Transformations in Integrable Systems written by Chaohao Gu and published by Springer Science & Business Media. This book was released on 2006-07-09 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Darboux transformation approach is one of the most effective methods for constructing explicit solutions of partial differential equations which are called integrable systems and play important roles in mechanics, physics and differential geometry. This book presents the Darboux transformations in matrix form and provides purely algebraic algorithms for constructing the explicit solutions. A basis for using symbolic computations to obtain the explicit exact solutions for many integrable systems is established. Moreover, the behavior of simple and multi-solutions, even in multi-dimensional cases, can be elucidated clearly. The method covers a series of important equations such as various kinds of AKNS systems in R1+n, harmonic maps from 2-dimensional manifolds, self-dual Yang-Mills fields and the generalizations to higher dimensional case, theory of line congruences in three dimensions or higher dimensional space etc. All these cases are explained in detail. This book contains many results that were obtained by the authors in the past few years. Audience: The book has been written for specialists, teachers and graduate students (or undergraduate students of higher grade) in mathematics and physics.

Integrable Systems and Algebraic Geometry

Download Integrable Systems and Algebraic Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108715745
Total Pages : 421 pages
Book Rating : 4.1/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Integrable Systems and Algebraic Geometry by : Ron Donagi

Download or read book Integrable Systems and Algebraic Geometry written by Ron Donagi and published by Cambridge University Press. This book was released on 2020-04-02 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.

Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds

Download Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9789401060967
Total Pages : 559 pages
Book Rating : 4.0/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds by : A.K. Prykarpatsky

Download or read book Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds written by A.K. Prykarpatsky and published by Springer. This book was released on 2012-10-10 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent times it has been stated that many dynamical systems of classical mathematical physics and mechanics are endowed with symplectic structures, given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact that great part of comprehensive integrability theories of nonlinear dynamical systems on manifolds is based on Lie-algebraic ideas, by means of which, in particular, the classification of such compatibly bi Hamiltonian and isospectrally Lax type integrable systems has been carried out. Many chapters of this book are devoted to their description, but to our regret so far the work has not been completed. Hereby our main goal in each analysed case consists in separating the basic algebraic essence responsible for the complete integrability, and which is, at the same time, in some sense universal, i. e. , characteristic for all of them. Integrability analysis in the framework of a gradient-holonomic algorithm, devised in this book, is fulfilled through three stages: 1) finding a symplectic structure (Poisson bracket) transforming an original dynamical system into a Hamiltonian form; 2) finding first integrals (action variables or conservation laws); 3) defining an additional set of variables and some functional operator quantities with completely controlled evolutions (for instance, as Lax type representation).

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices

Download Algebraic and Geometric Aspects of Integrable Systems and Random Matrices PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821887475
Total Pages : 363 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic and Geometric Aspects of Integrable Systems and Random Matrices by : Anton Dzhamay

Download or read book Algebraic and Geometric Aspects of Integrable Systems and Random Matrices written by Anton Dzhamay and published by American Mathematical Soc.. This book was released on 2013-06-26 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, held from January 6-7, 2012, in Boston, MA. The very wide range of topics represented in this volume illustrates

Seiberg-Witten Theory and Integrable Systems

Download Seiberg-Witten Theory and Integrable Systems PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810236366
Total Pages : 268 pages
Book Rating : 4.2/5 (363 download)

DOWNLOAD NOW!


Book Synopsis Seiberg-Witten Theory and Integrable Systems by : Andrei Marshakov

Download or read book Seiberg-Witten Theory and Integrable Systems written by Andrei Marshakov and published by World Scientific. This book was released on 1999 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics ? systems of integrable nonlinear differential equations and their algebro-geometric solutions.First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain.Several ?toy-model? examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories.Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory.

Representation Theory, Mathematical Physics, and Integrable Systems

Download Representation Theory, Mathematical Physics, and Integrable Systems PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 9783030781477
Total Pages : 643 pages
Book Rating : 4.7/5 (814 download)

DOWNLOAD NOW!


Book Synopsis Representation Theory, Mathematical Physics, and Integrable Systems by : Anton Alekseev

Download or read book Representation Theory, Mathematical Physics, and Integrable Systems written by Anton Alekseev and published by Birkhäuser. This book was released on 2022-02-05 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and string theory, and the introduction of cluster algebra and categorification techniques into a broad range of areas. Chapters will also cover novel applications of representation theory to random matrix theory, exactly solvable models in statistical mechanics, and integrable hierarchies. The recent progress in the mathematical and physicals aspects of deformation quantization and tensor categories is also addressed. Representation Theory, Mathematical Physics, and Integrable Systems will be of interest to a wide audience of mathematicians interested in these areas and the connections between them, ranging from graduate students to junior, mid-career, and senior researchers.

Introduction to Classical Integrable Systems

Download Introduction to Classical Integrable Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521822671
Total Pages : 622 pages
Book Rating : 4.8/5 (226 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Classical Integrable Systems by : Olivier Babelon

Download or read book Introduction to Classical Integrable Systems written by Olivier Babelon and published by Cambridge University Press. This book was released on 2003-04-17 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the theory of classical integrable systems, discussing the various approaches to the subject and explaining their interrelations. The book begins by introducing the central ideas of the theory of integrable systems, based on Lax representations, loop groups and Riemann surfaces. These ideas are then illustrated with detailed studies of model systems. The connection between isomonodromic deformation and integrability is discussed, and integrable field theories are covered in detail. The KP, KdV and Toda hierarchies are explained using the notion of Grassmannian, vertex operators and pseudo-differential operators. A chapter is devoted to the inverse scattering method and three complementary chapters cover the necessary mathematical tools from symplectic geometry, Riemann surfaces and Lie algebras. The book contains many worked examples and is suitable for use as a textbook on graduate courses. It also provides a comprehensive reference for researchers already working in the field.