Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Initialized Fractional Calculus
Download Initialized Fractional Calculus full books in PDF, epub, and Kindle. Read online Initialized Fractional Calculus ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Initialized Fractional Calculus by : Carl F. Lorenzo
Download or read book Initialized Fractional Calculus written by Carl F. Lorenzo and published by . This book was released on 2000 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grünwald fractional calculi. Two forms of initialization, terminal and side are developed.
Book Synopsis Advances in Fractional Calculus by : J. Sabatier
Download or read book Advances in Fractional Calculus written by J. Sabatier and published by Springer Science & Business Media. This book was released on 2007-07-28 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.
Book Synopsis Functional Fractional Calculus for System Identification and Controls by : Shantanu Das
Download or read book Functional Fractional Calculus for System Identification and Controls written by Shantanu Das and published by Springer Science & Business Media. This book was released on 2007-09-26 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, not only are mathematical abstractions discussed in a lucid manner, but also several practical applications are given particularly for system identification, description and then efficient controls. The reader gets a feeling of the wide applicability of fractional calculus in the field of science and engineering. With this book, a starter can understand the concepts of this emerging field with a minimal effort and basic mathematics.
Book Synopsis Functional Fractional Calculus by : Shantanu Das
Download or read book Functional Fractional Calculus written by Shantanu Das and published by Springer Science & Business Media. This book was released on 2011-06-01 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: When a new extraordinary and outstanding theory is stated, it has to face criticism and skeptism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its application to real life problems. It is extraordinary because it does not deal with ‘ordinary’ differential calculus. It is outstanding because it can now be applied to situations where existing theories fail to give satisfactory results. In this book not only mathematical abstractions are discussed in a lucid manner, with physical mathematical and geometrical explanations, but also several practical applications are given particularly for system identification, description and then efficient controls. The normal physical laws like, transport theory, electrodynamics, equation of motions, elasticity, viscosity, and several others of are based on ‘ordinary’ calculus. In this book these physical laws are generalized in fractional calculus contexts; taking, heterogeneity effect in transport background, the space having traps or islands, irregular distribution of charges, non-ideal spring with mass connected to a pointless-mass ball, material behaving with viscous as well as elastic properties, system relaxation with and without memory, physics of random delay in computer network; and several others; mapping the reality of nature closely. The concept of fractional and complex order differentiation and integration are elaborated mathematically, physically and geometrically with examples. The practical utility of local fractional differentiation for enhancing the character of singularity at phase transition or characterizing the irregularity measure of response function is deliberated. Practical results of viscoelastic experiments, fractional order controls experiments, design of fractional controller and practical circuit synthesis for fractional order elements are elaborated in this book. The book also maps theory of classical integer order differential equations to fractional calculus contexts, and deals in details with conflicting and demanding initialization issues, required in classical techniques. The book presents a modern approach to solve the ‘solvable’ system of fractional and other differential equations, linear, non-linear; without perturbation or transformations, but by applying physical principle of action-and-opposite-reaction, giving ‘approximately exact’ series solutions. Historically, Sir Isaac Newton and Gottfried Wihelm Leibniz independently discovered calculus in the middle of the 17th century. In recognition to this remarkable discovery, J.von Neumann remarked, “...the calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more equivocally than anything else the inception of modern mathematical analysis which is logical development, still constitute the greatest technical advance in exact thinking.” This XXI century has thus started to ‘think-exactly’ for advancement in science & technology by growing application of fractional calculus, and this century has started speaking the language which nature understands the best.
Book Synopsis Kindergarten of Fractional Calculus by : Shantanu Das
Download or read book Kindergarten of Fractional Calculus written by Shantanu Das and published by Cambridge Scholars Publishing. This book was released on 2020-02-18 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a simplified deliberation of fractional calculus, which will appeal not only to beginners, but also to various applied science mathematicians and engineering researchers. The text develops the ideas behind this new field of mathematics, beginning at the most elementary level, before discussing its actual applications in different areas of science and engineering. This book shows that the simple, classical laws based on Newtonian calculus, which work quite well under limiting and idealized conditions, are not of much use in describing the dynamics of actual systems. As such, the application of non-Newtonian, or generalized, calculus in the governing equations, allows the order of differentiation and integration to take on non-integer values.
Book Synopsis Introduction To The Fractional Calculus Of Variations by : Delfim F M Torres
Download or read book Introduction To The Fractional Calculus Of Variations written by Delfim F M Torres and published by World Scientific Publishing Company. This book was released on 2012-09-14 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book provides a broad introduction to the fascinating and beautiful subject of Fractional Calculus of Variations (FCV). In 1996, FVC evolved in order to better describe non-conservative systems in mechanics. The inclusion of non-conservatism is extremely important from the point of view of applications. Forces that do not store energy are always present in real systems. They remove energy from the systems and, as a consequence, Noether's conservation laws cease to be valid. However, it is still possible to obtain the validity of Noether's principle using FCV. The new theory provides a more realistic approach to physics, allowing us to consider non-conservative systems in a natural way. The authors prove the necessary Euler-Lagrange conditions and corresponding Noether theorems for several types of fractional variational problems, with and without constraints, using Lagrangian and Hamiltonian formalisms. Sufficient optimality conditions are also obtained under convexity, and Leitmann's direct method is discussed within the framework of FCV.The book is self-contained and unified in presentation. It may be used as an advanced textbook by graduate students and ambitious undergraduates in mathematics and mechanics. It provides an opportunity for an introduction to FCV for experienced researchers. The explanations in the book are detailed, in order to capture the interest of the curious reader, and the book provides the necessary background material required to go further into the subject and explore the rich research literature./a
Book Synopsis Fractional Calculus by : Roy Abi Zeid Daou
Download or read book Fractional Calculus written by Roy Abi Zeid Daou and published by Nova Science Publishers. This book was released on 2014-01-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of this two-volume book, presents history, the mathematical modelling and the applications of fractional order systems, and contains mathematical and theoretical studies and research related to this domain. This volume is made up of 11 chapters. The first chapter presents an analysis of the Caputo derivative and the pseudo state representation with the infinite state approach. The second chapter studies the stability of a class of fractional Cauchy problems. The third chapter shows how to solve fractional order differential equations and fractional order partial differential equations using modern matrix algebraic approaches. Following this chapter, chapter four proposes another analytical method to solve differential equations with local fractional derivative operators. Concerning chapter five, it presents the extended Borel transform and its related fractional analysis. After presenting the analytical resolution methods for fractional calculus, chapter six shows the essentials of fractional calculus on discrete settings. The initialisation of such systems is shown in chapter seven. In fact, this chapter presents a generalised application of the Hankel operator for initialisation of fractional order systems. The last four chapters show some new studies and applications of non-integer calculus. In fact, chapter eight presents the fractional reaction-transport equations and evanescent continuous time random walks. Chapter nine shows a novel approach in the exponential integrators for fractional differential equations. Chapter ten presents the non-fragile tuning of fractional order PD controllers for integrating time delay systems. At the end, chapter eleven proposes a discrete finite-dimensional approximation of linear infinite dimensional systems. To sum up, this volume presents a mathematical and theoretical study of fractional calculus along with a stability study and some applications. This volume ends up with some new techniques and methods applied in fractional calculus. This volume will be followed up by a second volume that focuses on the applications of fractional calculus in several engineering domains.
Book Synopsis Fractional Calculus for Hydrology, Soil Science and Geomechanics by : Ninghu Su
Download or read book Fractional Calculus for Hydrology, Soil Science and Geomechanics written by Ninghu Su and published by CRC Press. This book was released on 2020-11-02 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
Download or read book NASA Tech Briefs written by and published by . This book was released on 2002 with total page 1020 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Fractional Calculus And Waves In Linear Viscoelasticity: An Introduction To Mathematical Models (Second Edition) by : Francesco Mainardi
Download or read book Fractional Calculus And Waves In Linear Viscoelasticity: An Introduction To Mathematical Models (Second Edition) written by Francesco Mainardi and published by World Scientific. This book was released on 2022-08-16 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional Calculus and Waves in Linear Viscoelasticity (Second Edition) is a self-contained treatment of the mathematical theory of linear (uni-axial) viscoelasticity (constitutive equation and waves) with particular regard to models based on fractional calculus. It serves as a general introduction to the above-mentioned areas of mathematical modeling. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to delve further into the subject and explore the research literature. In particular the relevant role played by some special functions is pointed out along with their visualization through plots. Graphics are extensively used in the book and a large general bibliography is included at the end.This new edition keeps the structure of the first edition but each chapter has been revised and expanded, and new additions include a novel appendix on complete monotonic and Bernstein functions that are known to play a fundamental role in linear viscoelasticity.This book is suitable for engineers, graduate students and researchers interested in fractional calculus and continuum mechanics.
Book Synopsis Solved Exercises in Fractional Calculus by : Edmundo Capelas de Oliveira
Download or read book Solved Exercises in Fractional Calculus written by Edmundo Capelas de Oliveira and published by Springer. This book was released on 2019-05-31 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a brief historical introduction and state of the art in fractional calculus. The author introduces some of the so-called special functions, in particular, those which will be directly involved in calculations. The concepts of fractional integral and fractional derivative are also presented. Each chapter, except for the first one, contains a list of exercises containing suggestions for solving them and at last the resolution itself. At the end of those chapters there is a list of complementary exercises. The last chapter presents several applications of fractional calculus.
Book Synopsis Fractional Behaviours Modelling by : Jocelyn Sabatier
Download or read book Fractional Behaviours Modelling written by Jocelyn Sabatier and published by Springer Nature. This book was released on 2022-03-18 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to the analysis and modelling of fractional behaviours that mainly result from physical stochastic phenomena (diffusion, adsorption or aggregation, etc.) of a population (ions, molecules, people, etc.) in a constrained environment and that can be found in numerous areas. It breaks with the usual approaches based on fractional models since it proposes to use unusual models which have the advantage of overcoming some of the limitations of fractional models. This book is dedicated to postgraduated students and to researchers in the field or those who wish to learn with a fresh perspective. After a review of fractional models and their limitations, it proposes and demonstrates the interest of four other modelling tools to capture fractional behaviours: new kernels in integral operators, Volterra equations, nonlinear models and partial differential equations with spatially variable coefficients. Several applications on real data and devices illustrate their efficiency.
Book Synopsis The Fractional Trigonometry by : Carl F. Lorenzo
Download or read book The Fractional Trigonometry written by Carl F. Lorenzo and published by John Wiley & Sons. This book was released on 2016-11-14 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addresses the rapidly growing field of fractional calculus and provides simplified solutions for linear commensurate-order fractional differential equations The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science is the result of the authors’ work in fractional calculus, and more particularly, in functions for the solutions of fractional differential equations, which is fostered in the behavior of generalized exponential functions. The authors discuss how fractional trigonometry plays a role analogous to the classical trigonometry for the fractional calculus by providing solutions to linear fractional differential equations. The book begins with an introductory chapter that offers insight into the fundamentals of fractional calculus, and topical coverage is then organized in two main parts. Part One develops the definitions and theories of fractional exponentials and fractional trigonometry. Part Two provides insight into various areas of potential application within the sciences. The fractional exponential function via the fundamental fractional differential equation, the generalized exponential function, and R-function relationships are discussed in addition to the fractional hyperboletry, the R1-fractional trigonometry, the R2-fractional trigonometry, and the R3-trigonometric functions. The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science also: Presents fractional trigonometry as a tool for scientists and engineers and discusses how to apply fractional-order methods to the current toolbox of mathematical modelers Employs a mathematically clear presentation in an e ort to make the topic broadly accessible Includes solutions to linear fractional differential equations and generously features graphical forms of functions to help readers visualize the presented concepts Provides effective and efficient methods to describe complex structures The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science is an ideal reference for academic researchers, research engineers, research scientists, mathematicians, physicists, biologists, and chemists who need to apply new fractional calculus methods to a variety of disciplines. The book is also appropriate as a textbook for graduate- and PhD-level courses in fractional calculus. Carl F. Lorenzo is Distinguished Research Associate at the NASA Glenn Research Center in Cleveland, Ohio. His past positions include chief engineer of the Instrumentation and Controls Division and chief of the Advanced Controls Technology and Systems Dynamics branches at NASA. He is internationally recognized for his work in the development and application of the fractional calculus and fractional trigonometry. Tom T. Hartley, PhD, is Emeritus Professor in the Department of Electrical and Computer Engineering at The University of Akron. Dr Hartley is a recognized expert in fractional-order systems, and together with Carl Lorenzo, has solved fundamental problems in the area including Riemann’s complementary-function initialization function problem. He received his PhD in Electrical Engineering from Vanderbilt University.
Book Synopsis Fractional Differential Equations by : Igor Podlubny
Download or read book Fractional Differential Equations written by Igor Podlubny and published by Elsevier. This book was released on 1998-10-27 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives
Book Synopsis Fractional Order Systems by : Ahmed G. Radwan
Download or read book Fractional Order Systems written by Ahmed G. Radwan and published by Academic Press. This book was released on 2021-10-13 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional Order Systems: An Overview of Mathematics, Design, and Applications for Engineers introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who want to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems. - Presents a simple and comprehensive understanding of the field of fractional-order systems - Offers practical knowledge on the design of fractional-order systems for different applications - Exposes users to possible new applications for fractional-order systems
Book Synopsis Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21) by : Andrzej Dzielinski
Download or read book Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21) written by Andrzej Dzielinski and published by Springer Nature. This book was released on 2022-04-26 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book touches upon various aspects of a very interesting, and growing in popularity category of models of dynamical systems. These are the so-called fractional-order systems. Such models are not only relevant for many fields of science and technology, but may also find numerous applications in other disciplines applying the mathematical modelling tools. Thus, the book is intended for a very wide audience of professionals who want to expand their knowledge of systems modelling and its applications. The book includes the selections of papers presented at the International Conference on Fractional Calculus and its Applications organized by the Warsaw University of Technology and was held online on 6–8 September 2021. The International Conference on Fractional Calculus and its Applications (ICFDA) has an almost twenty years history. It started in Bordeaux (France) in 2004, followed by Porto (Portugal) 2006, Istanbul (Turkey) 2008, Badajoz (Spain) 2010, Nanjing (China) 2012, Catania (Italy) 2014, Novi Sad (Serbia) 2016, Amman (Jordan) 2018. Next ICFDA was planned in 2020 in Warsaw (Poland), but COVID-19 pandemic shifted it to 6–8 September 2021. Hence, the organizers were forced to change the form of the conference to the online one. In the volume twenty eight high-quality research papers presented during the ICFDA 2021 eleven Regular Sessions with an additional online Discussion Session are presented. The presented papers are scientifically inspiring, leading to new fruitful ideas. They cover a very broad range of many disciplines. Nowadays, and especially in such a subject as fractional calculus, it is very difficult to assign papers to specific scientific areas. So, many of the papers included have an interdisciplinary character.
Book Synopsis Control of Initialized Fractional-Order Systems by :
Download or read book Control of Initialized Fractional-Order Systems written by and published by . This book was released on 2002 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt: