Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Infinite Homotopy Theory
Download Infinite Homotopy Theory full books in PDF, epub, and Kindle. Read online Infinite Homotopy Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Infinite Homotopy Theory by : H-J. Baues
Download or read book Infinite Homotopy Theory written by H-J. Baues and published by Springer Science & Business Media. This book was released on 2001-06-30 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with algebraic topology, homotopy theory and simple homotopy theory of infinite CW-complexes with ends. Contrary to most other works on these subjects, the current volume does not use inverse systems to treat these topics. Here, the homotopy theory is approached without the rather sophisticated notion of pro-category. Spaces with ends are studied only by using appropriate constructions such as spherical objects of CW-complexes in the category of spaces with ends, and all arguments refer directly to this category. In this way, infinite homotopy theory is presented as a natural extension of classical homotopy theory. In particular, this book introduces the construction of the proper groupoid of a space with ends and then the cohomology with local coefficients is defined by the enveloping ringoid of the proper fundamental groupoid. This volume will be of interest to researchers whose work involves algebraic topology, category theory, homological algebra, general topology, manifolds, and cell complexes.
Book Synopsis The Geometry of Iterated Loop Spaces by : J.P. May
Download or read book The Geometry of Iterated Loop Spaces written by J.P. May and published by Springer. This book was released on 2006-11-15 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nilpotence and Periodicity in Stable Homotopy Theory by : Douglas C. Ravenel
Download or read book Nilpotence and Periodicity in Stable Homotopy Theory written by Douglas C. Ravenel and published by Princeton University Press. This book was released on 1992-11-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.
Book Synopsis Categorical Homotopy Theory by : Emily Riehl
Download or read book Categorical Homotopy Theory written by Emily Riehl and published by Cambridge University Press. This book was released on 2014-05-26 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Book Synopsis Homotopy Type Theory: Univalent Foundations of Mathematics by :
Download or read book Homotopy Type Theory: Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Cubical Homotopy Theory by : Brian A. Munson
Download or read book Cubical Homotopy Theory written by Brian A. Munson and published by Cambridge University Press. This book was released on 2015-10-06 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern, example-driven introduction to cubical diagrams and related topics such as homotopy limits and cosimplicial spaces.
Book Synopsis Complex Cobordism and Stable Homotopy Groups of Spheres by : Douglas C. Ravenel
Download or read book Complex Cobordism and Stable Homotopy Groups of Spheres written by Douglas C. Ravenel and published by American Mathematical Soc.. This book was released on 2003-11-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Book Synopsis Simplicial Homotopy Theory by : Paul G. Goerss
Download or read book Simplicial Homotopy Theory written by Paul G. Goerss and published by Birkhäuser. This book was released on 2012-12-06 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.
Book Synopsis Elements of ∞-Category Theory by : Emily Riehl
Download or read book Elements of ∞-Category Theory written by Emily Riehl and published by Cambridge University Press. This book was released on 2022-02-10 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.
Book Synopsis Motivic Homotopy Theory by : Bjorn Ian Dundas
Download or read book Motivic Homotopy Theory written by Bjorn Ian Dundas and published by Springer Science & Business Media. This book was released on 2007-07-11 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.
Book Synopsis Linear Topological Spaces by : John L Kelley
Download or read book Linear Topological Spaces written by John L Kelley and published by Hassell Street Press. This book was released on 2021-09-09 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Book Synopsis From Categories to Homotopy Theory by : Birgit Richter
Download or read book From Categories to Homotopy Theory written by Birgit Richter and published by Cambridge University Press. This book was released on 2020-04-16 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.
Download or read book Ends of Complexes written by Bruce Hughes and published by Cambridge University Press. This book was released on 1996-08-28 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic exposition of the theory and practice of ends of manifolds and CW complexes, not previously available.
Book Synopsis Topological Methods in Group Theory by : Ross Geoghegan
Download or read book Topological Methods in Group Theory written by Ross Geoghegan and published by Springer Science & Business Media. This book was released on 2007-12-17 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.
Book Synopsis Abstract Homotopy And Simple Homotopy Theory by : K Heiner Kamps
Download or read book Abstract Homotopy And Simple Homotopy Theory written by K Heiner Kamps and published by World Scientific. This book was released on 1997-04-11 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The abstract homotopy theory is based on the observation that analogues of much of the topological homotopy theory and simple homotopy theory exist in many other categories (e.g. spaces over a fixed base, groupoids, chain complexes, module categories). Studying categorical versions of homotopy structure, such as cylinders and path space constructions, enables not only a unified development of many examples of known homotopy theories but also reveals the inner working of the classical spatial theory. This demonstrates the logical interdependence of properties (in particular the existence of certain Kan fillers in associated cubical sets) and results (Puppe sequences, Vogt's Iemma, Dold's theorem on fibre homotopy equivalences, and homotopy coherence theory).
Download or read book The $K$-book written by Charles A. Weibel and published by American Mathematical Soc.. This book was released on 2013-06-13 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr
Book Synopsis Equivariant Stable Homotopy Theory by : L. Gaunce Jr. Lewis
Download or read book Equivariant Stable Homotopy Theory written by L. Gaunce Jr. Lewis and published by Springer. This book was released on 2006-11-14 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a foundational piece of work in stable homotopy theory and in the theory of transformation groups. It may be roughly divided into two parts. The first part deals with foundations of (equivariant) stable homotopy theory. A workable category of CW-spectra is developed. The foundations are such that an action of a compact Lie group is considered throughout, and spectra allow desuspension by arbitrary representations. But even if the reader forgets about group actions, he will find many details of the theory worked out for the first time. More subtle constructions like smash products, function spectra, change of group isomorphisms, fixed point and orbit spectra are treated. While it is impossible to survey properly the material which is covered in the book, it does boast these general features: (i) a thorough and reliable presentation of the foundations of the theory; (ii) a large number of basic results, principal applications, and fundamental techniques presented for the first time in a coherent theory, unifying numerous treatments of special cases in the literature.