Infinite-Dimensional Optimization and Convexity

Download Infinite-Dimensional Optimization and Convexity PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 0226199886
Total Pages : 175 pages
Book Rating : 4.2/5 (261 download)

DOWNLOAD NOW!


Book Synopsis Infinite-Dimensional Optimization and Convexity by : Ivar Ekeland

Download or read book Infinite-Dimensional Optimization and Convexity written by Ivar Ekeland and published by University of Chicago Press. This book was released on 1983-09-15 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The caratheodory approach; Infinite-dimensional optimization; Duality theory.

Convexity and Optimization in Banach Spaces

Download Convexity and Optimization in Banach Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 940072246X
Total Pages : 376 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Convexity and Optimization in Banach Spaces by : Viorel Barbu

Download or read book Convexity and Optimization in Banach Spaces written by Viorel Barbu and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: An updated and revised edition of the 1986 title Convexity and Optimization in Banach Spaces, this book provides a self-contained presentation of basic results of the theory of convex sets and functions in infinite-dimensional spaces. The main emphasis is on applications to convex optimization and convex optimal control problems in Banach spaces. A distinctive feature is a strong emphasis on the connection between theory and application. This edition has been updated to include new results pertaining to advanced concepts of subdifferential for convex functions and new duality results in convex programming. The last chapter, concerned with convex control problems, has been rewritten and completed with new research concerning boundary control systems, the dynamic programming equations in optimal control theory and periodic optimal control problems. Finally, the structure of the book has been modified to highlight the most recent progression in the field including fundamental results on the theory of infinite-dimensional convex analysis and includes helpful bibliographical notes at the end of each chapter.

Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization

Download Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401140669
Total Pages : 218 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization by : D. Butnariu

Download or read book Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization written by D. Butnariu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea surable families of operators and optimization methods in infinite dimen sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional Banach spaces was started in [33] where it was shown that they are useful tools for extrapolating properties commonly known to belong to operators satisfying demanding contractivity requirements to classes of operators which are not even mildly nonexpansive.

Optimality Conditions in Convex Optimization

Download Optimality Conditions in Convex Optimization PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439868220
Total Pages : 446 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Optimality Conditions in Convex Optimization by : Anulekha Dhara

Download or read book Optimality Conditions in Convex Optimization written by Anulekha Dhara and published by CRC Press. This book was released on 2011-10-17 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimality Conditions in Convex Optimization explores an important and central issue in the field of convex optimization: optimality conditions. It brings together the most important and recent results in this area that have been scattered in the literature—notably in the area of convex analysis—essential in developing many of the important results in this book, and not usually found in conventional texts. Unlike other books on convex optimization, which usually discuss algorithms along with some basic theory, the sole focus of this book is on fundamental and advanced convex optimization theory. Although many results presented in the book can also be proved in infinite dimensions, the authors focus on finite dimensions to allow for much deeper results and a better understanding of the structures involved in a convex optimization problem. They address semi-infinite optimization problems; approximate solution concepts of convex optimization problems; and some classes of non-convex problems which can be studied using the tools of convex analysis. They include examples wherever needed, provide details of major results, and discuss proofs of the main results.

Convex Analysis and Variational Problems

Download Convex Analysis and Variational Problems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611971088
Total Pages : 414 pages
Book Rating : 4.9/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Variational Problems by : Ivar Ekeland

Download or read book Convex Analysis and Variational Problems written by Ivar Ekeland and published by SIAM. This book was released on 1999-12-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.

Infinite Dimensional Analysis

Download Infinite Dimensional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662030047
Total Pages : 623 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Infinite Dimensional Analysis by : Charalambos D. Aliprantis

Download or read book Infinite Dimensional Analysis written by Charalambos D. Aliprantis and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text was born out of an advanced mathematical economics seminar at Caltech in 1989-90. We realized that the typical graduate student in mathematical economics has to be familiar with a vast amount of material that spans several traditional fields in mathematics. Much of the mate rial appears only in esoteric research monographs that are designed for specialists, not for the sort of generalist that our students need be. We hope that in a small way this text will make the material here accessible to a much broader audience. While our motivation is to present and orga nize the analytical foundations underlying modern economics and finance, this is a book of mathematics, not of economics. We mention applications to economics but present very few of them. They are there to convince economists that the material has so me relevance and to let mathematicians know that there are areas of application for these results. We feel that this text could be used for a course in analysis that would benefit math ematicians, engineers, and scientists. Most of the material we present is available elsewhere, but is scattered throughout a variety of sources and occasionally buried in obscurity. Some of our results are original (or more likely, independent rediscoveries). We have included some material that we cannot honestly say is neces sary to understand modern economic theory, but may yet prove useful in future research.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Download Convex Analysis and Monotone Operator Theory in Hilbert Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319483110
Total Pages : 624 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Monotone Operator Theory in Hilbert Spaces by : Heinz H. Bauschke

Download or read book Convex Analysis and Monotone Operator Theory in Hilbert Spaces written by Heinz H. Bauschke and published by Springer. This book was released on 2017-02-28 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.

Infinite Dimensional Analysis

Download Infinite Dimensional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540326960
Total Pages : 732 pages
Book Rating : 4.3/5 (269 download)

DOWNLOAD NOW!


Book Synopsis Infinite Dimensional Analysis by : Charalambos D. Aliprantis

Download or read book Infinite Dimensional Analysis written by Charalambos D. Aliprantis and published by Springer Science & Business Media. This book was released on 2007-05-02 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a study of modern functional analysis. It is intended for the student or researcher who could benefit from functional analytic methods, but does not have an extensive background and does not plan to make a career as a functional analyst.

Optimization by Vector Space Methods

Download Optimization by Vector Space Methods PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471181170
Total Pages : 348 pages
Book Rating : 4.1/5 (811 download)

DOWNLOAD NOW!


Book Synopsis Optimization by Vector Space Methods by : David G. Luenberger

Download or read book Optimization by Vector Space Methods written by David G. Luenberger and published by John Wiley & Sons. This book was released on 1997-01-23 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.

Convex Analysis and Nonlinear Optimization

Download Convex Analysis and Nonlinear Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387312560
Total Pages : 316 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Nonlinear Optimization by : Jonathan Borwein

Download or read book Convex Analysis and Nonlinear Optimization written by Jonathan Borwein and published by Springer Science & Business Media. This book was released on 2010-05-05 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

Infinite Dimensional Analysis

Download Infinite Dimensional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662039613
Total Pages : 692 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Infinite Dimensional Analysis by : Charalambos D. Aliprantis

Download or read book Infinite Dimensional Analysis written by Charalambos D. Aliprantis and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents functional analytic methods in a unified manner with applications to economics, social sciences, and engineering. Ideal for those without an extensive background in the area, it develops topology, convexity, Banach lattices, integration, correspondences, and the analytic approach to Markov processes. Many of the results were previously available only in esoteric monographs and will interest researchers and students who will find the material readily applicable to problems in control theory and economics.

Convex Optimization & Euclidean Distance Geometry

Download Convex Optimization & Euclidean Distance Geometry PDF Online Free

Author :
Publisher : Meboo Publishing USA
ISBN 13 : 0976401304
Total Pages : 776 pages
Book Rating : 4.9/5 (764 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization & Euclidean Distance Geometry by : Jon Dattorro

Download or read book Convex Optimization & Euclidean Distance Geometry written by Jon Dattorro and published by Meboo Publishing USA. This book was released on 2005 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.

Functional Analysis and Infinite-Dimensional Geometry

Download Functional Analysis and Infinite-Dimensional Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475734808
Total Pages : 455 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis and Infinite-Dimensional Geometry by : Marian Fabian

Download or read book Functional Analysis and Infinite-Dimensional Geometry written by Marian Fabian and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic principles of functional analysis and areas of Banach space theory that are close to nonlinear analysis and topology. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints.

Foundations of Optimization

Download Foundations of Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387684077
Total Pages : 445 pages
Book Rating : 4.3/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Optimization by : Osman Güler

Download or read book Foundations of Optimization written by Osman Güler and published by Springer Science & Business Media. This book was released on 2010-08-03 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamental principles of optimization in finite dimensions. It develops the necessary material in multivariable calculus both with coordinates and coordinate-free, so recent developments such as semidefinite programming can be dealt with.

Convex Optimization

Download Convex Optimization PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521833783
Total Pages : 744 pages
Book Rating : 4.8/5 (337 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization by : Stephen P. Boyd

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Approximation and Optimization of Discrete and Differential Inclusions

Download Approximation and Optimization of Discrete and Differential Inclusions PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0123884284
Total Pages : 396 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Approximation and Optimization of Discrete and Differential Inclusions by : Elimhan N Mahmudov

Download or read book Approximation and Optimization of Discrete and Differential Inclusions written by Elimhan N Mahmudov and published by Elsevier. This book was released on 2011-08-25 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones Includes practical examples

Elementary Convexity with Optimization

Download Elementary Convexity with Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819916526
Total Pages : 148 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Elementary Convexity with Optimization by : Vivek S. Borkar

Download or read book Elementary Convexity with Optimization written by Vivek S. Borkar and published by Springer Nature. This book was released on 2023-06-26 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the concepts of fundamental convex analysis and optimization by using advanced calculus and real analysis. Brief accounts of advanced calculus and real analysis are included within the book. The emphasis is on building a geometric intuition for the subject, which is aided further by supporting figures. Two distinguishing features of this book are the use of elementary alternative proofs of many results and an eclectic collection of useful concepts from optimization and convexity often needed by researchers in optimization, game theory, control theory, and mathematical economics. A full chapter on optimization algorithms gives an overview of the field, touching upon many current themes. The book is useful to advanced undergraduate and graduate students as well as researchers in the fields mentioned above and in various engineering disciplines.