Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Infinite Dimensional Linear Control Systems
Download Infinite Dimensional Linear Control Systems full books in PDF, epub, and Kindle. Read online Infinite Dimensional Linear Control Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis An Introduction to Infinite-Dimensional Linear Systems Theory by : Ruth F. Curtain
Download or read book An Introduction to Infinite-Dimensional Linear Systems Theory written by Ruth F. Curtain and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infinite dimensional systems is now an established area of research. Given the recent trend in systems theory and in applications towards a synthesis of time- and frequency-domain methods, there is a need for an introductory text which treats both state-space and frequency-domain aspects in an integrated fashion. The authors' primary aim is to write an introductory textbook for a course on infinite dimensional linear systems. An important consideration by the authors is that their book should be accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Consequently, all the mathematical background is summarized in an extensive appendix. For the majority of students, this would be their only acquaintance with infinite dimensional systems.
Book Synopsis Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces by : Birgit Jacob
Download or read book Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces written by Birgit Jacob and published by Springer Science & Business Media. This book was released on 2012-06-13 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.
Book Synopsis Infinite Dimensional Linear Systems Theory by : Ruth F. Curtain
Download or read book Infinite Dimensional Linear Systems Theory written by Ruth F. Curtain and published by Springer. This book was released on 1978 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Optimal Control Theory for Infinite Dimensional Systems by : Xungjing Li
Download or read book Optimal Control Theory for Infinite Dimensional Systems written by Xungjing Li and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infinite dimensional systems can be used to describe many phenomena in the real world. As is well known, heat conduction, properties of elastic plastic material, fluid dynamics, diffusion-reaction processes, etc., all lie within this area. The object that we are studying (temperature, displace ment, concentration, velocity, etc.) is usually referred to as the state. We are interested in the case where the state satisfies proper differential equa tions that are derived from certain physical laws, such as Newton's law, Fourier's law etc. The space in which the state exists is called the state space, and the equation that the state satisfies is called the state equation. By an infinite dimensional system we mean one whose corresponding state space is infinite dimensional. In particular, we are interested in the case where the state equation is one of the following types: partial differential equation, functional differential equation, integro-differential equation, or abstract evolution equation. The case in which the state equation is being a stochastic differential equation is also an infinite dimensional problem, but we will not discuss such a case in this book.
Book Synopsis Infinite Dimensional Linear Control Systems by :
Download or read book Infinite Dimensional Linear Control Systems written by and published by Elsevier. This book was released on 2005-07-12 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: For more than forty years, the equation y'(t) = Ay(t) + u(t) in Banach spaces has been used as model for optimal control processes described by partial differential equations, in particular heat and diffusion processes. Many of the outstanding open problems, however, have remained open until recently, and some have never been solved. This book is a survey of all results know to the author, with emphasis on very recent results (1999 to date). The book is restricted to linear equations and two particular problems (the time optimal problem, the norm optimal problem) which results in a more focused and concrete treatment. As experience shows, results on linear equations are the basis for the treatment of their semilinear counterparts, and techniques for the time and norm optimal problems can often be generalized to more general cost functionals. The main object of this book is to be a state-of-the-art monograph on the theory of the time and norm optimal controls for y'(t) = Ay(t) + u(t) that ends at the very latest frontier of research, with open problems and indications for future research. Key features: · Applications to optimal diffusion processes. · Applications to optimal heat propagation processes. · Modelling of optimal processes governed by partial differential equations. · Complete bibliography. · Includes the latest research on the subject. · Does not assume anything from the reader except basic functional analysis. · Accessible to researchers and advanced graduate students alike· Applications to optimal diffusion processes.· Applications to optimal heat propagation processes.· Modelling of optimal processes governed by partial differential equations.· Complete bibliography.· Includes the latest research on the subject.· Does not assume anything from the reader except basic functional analysis.· Accessible to researchers and advanced graduate students alike
Book Synopsis Stability and Stabilization of Infinite Dimensional Systems with Applications by : Zheng-Hua Luo
Download or read book Stability and Stabilization of Infinite Dimensional Systems with Applications written by Zheng-Hua Luo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on recent achievements in stability and feedback stabilization of infinite systems. In particular emphasis is placed on second order partial differential equations, such as Euler-Bernoulli beam equations, which arise from vibration control of flexible robots arms and large space structures. Various control methods such as sensor feedback control and dynamic boundary control are applied to stabilize the equations. Many new theorems and methods are included in the book. Proof procedures of existing theorems are simplified, and detailed proofs have been given to most theorems. New results on semigroups and their stability are presented, and readers can learn several useful techniques for solving practical engineering problems. Until now, the recently obtained research results included in this book were unavailable in one volume. This self-contained book is an invaluable source of information for all those who are familiar with some basic theorems of functional analysis.
Book Synopsis Infinite Dimensional Optimization and Control Theory by : Hector O. Fattorini
Download or read book Infinite Dimensional Optimization and Control Theory written by Hector O. Fattorini and published by Cambridge University Press. This book was released on 1999-03-28 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: Treats optimal problems for systems described by ODEs and PDEs, using an approach that unifies finite and infinite dimensional nonlinear programming.
Book Synopsis Stability of Finite and Infinite Dimensional Systems by : Michael I. Gil'
Download or read book Stability of Finite and Infinite Dimensional Systems written by Michael I. Gil' and published by Springer Science & Business Media. This book was released on 1998-09-30 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis.
Book Synopsis Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems by : Thomas Meurer
Download or read book Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems written by Thomas Meurer and published by Springer Science & Business Media. This book was released on 2005-09-19 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a well balanced combination of state-of-the-art theoretical results in the field of nonlinear controller and observer design, combined with industrial applications stemming from mechatronics, electrical, (bio–) chemical engineering, and fluid dynamics. The unique combination of results of finite as well as infinite–dimensional systems makes this book a remarkable contribution addressing postgraduates, researchers, and engineers both at universities and in industry. The contributions to this book were presented at the Symposium on Nonlinear Control and Observer Design: From Theory to Applications (SYNCOD), held September 15–16, 2005, at the University of Stuttgart, Germany. The conference and this book are dedicated to the 65th birthday of Prof. Dr.–Ing. Dr.h.c. Michael Zeitz to honor his life – long research and contributions on the fields of nonlinear control and observer design.
Book Synopsis Infinite Dimensional Dynamical Systems by : John Mallet-Paret
Download or read book Infinite Dimensional Dynamical Systems written by John Mallet-Paret and published by Springer Science & Business Media. This book was released on 2012-10-11 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation and applications of new developments of nonlinear analysis and other mathematical theories. Theories of the infinite dimensional dynamical systems have also found more and more important applications in physical, chemical, and life sciences. This book collects 19 papers from 48 invited lecturers to the International Conference on Infinite Dimensional Dynamical Systems held at York University, Toronto, in September of 2008. As the conference was dedicated to Professor George Sell from University of Minnesota on the occasion of his 70th birthday, this collection reflects the pioneering work and influence of Professor Sell in a few core areas of dynamical systems, including non-autonomous dynamical systems, skew-product flows, invariant manifolds theory, infinite dimensional dynamical systems, approximation dynamics, and fluid flows.
Book Synopsis Infinite-Dimensional Dynamical Systems in Mechanics and Physics by : Roger Temam
Download or read book Infinite-Dimensional Dynamical Systems in Mechanics and Physics written by Roger Temam and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first attempt at a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics. Other areas of science and technology are included where appropriate. The relation between infinite and finite dimensional systems is presented from a synthetic viewpoint and equations considered include reaction-diffusion, Navier-Stokes and other fluid mechanics equations, magnetohydrodynamics, thermohydraulics, pattern formation, Ginzburg-Landau, damped wave and an introduction to inertial manifolds.
Book Synopsis Stability of Infinite Dimensional Stochastic Differential Equations with Applications by : Kai Liu
Download or read book Stability of Infinite Dimensional Stochastic Differential Equations with Applications written by Kai Liu and published by CRC Press. This book was released on 2005-08-23 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic differential equations in infinite dimensional spaces are motivated by the theory and analysis of stochastic processes and by applications such as stochastic control, population biology, and turbulence, where the analysis and control of such systems involves investigating their stability. While the theory of such equations is well establ
Book Synopsis Infinite-Dimensional Dynamical Systems by : James C. Robinson
Download or read book Infinite-Dimensional Dynamical Systems written by James C. Robinson and published by Cambridge University Press. This book was released on 2001-04-23 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.
Book Synopsis Mathematical Control Theory by : Eduardo D. Sontag
Download or read book Mathematical Control Theory written by Eduardo D. Sontag and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.
Book Synopsis Functional Analysis and Infinite-Dimensional Geometry by : Marian Fabian
Download or read book Functional Analysis and Infinite-Dimensional Geometry written by Marian Fabian and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic principles of functional analysis and areas of Banach space theory that are close to nonlinear analysis and topology. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints.
Book Synopsis Mathematical Control Theory by : Jerzy Zabczyk
Download or read book Mathematical Control Theory written by Jerzy Zabczyk and published by Springer Science & Business Media. This book was released on 2008 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a mathematically precise manner, this book presents a unified introduction to deterministic control theory. It includes material on the realization of both linear and nonlinear systems, impulsive control, and positive linear systems.
Book Synopsis Model-Reference Adaptive Control by : Nhan T. Nguyen
Download or read book Model-Reference Adaptive Control written by Nhan T. Nguyen and published by Springer. This book was released on 2018-03-01 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides readers with a good working knowledge of adaptive control theory through applications. It is intended for students beginning masters or doctoral courses, and control practitioners wishing to get up to speed in the subject expeditiously. Readers are taught a wide variety of adaptive control techniques starting with simple methods and extending step-by-step to more complex ones. Stability proofs are provided for all adaptive control techniques without obfuscating reader understanding with excessive mathematics. The book begins with standard model-reference adaptive control (MRAC) for first-order, second-order, and multi-input, multi-output systems. Treatment of least-squares parameter estimation and its extension to MRAC follow, helping readers to gain a different perspective on MRAC. Function approximation with orthogonal polynomials and neural networks, and MRAC using neural networks are also covered. Robustness issues connected with MRAC are discussed, helping the student to appreciate potential pitfalls of the technique. This appreciation is encouraged by drawing parallels between various aspects of robustness and linear time-invariant systems wherever relevant. Following on from the robustness problems is material covering robust adaptive control including standard methods and detailed exposition of recent advances, in particular, the author’s work on optimal control modification. Interesting properties of the new method are illustrated in the design of adaptive systems to meet stability margins. This method has been successfully flight-tested on research aircraft, one of various flight-control applications detailed towards the end of the book along with a hybrid adaptive flight control architecture that combines direct MRAC with least-squares indirect adaptive control. In addition to the applications, understanding is encouraged by the use of end-of-chapter exercises and associated MATLAB® files. Readers will need no more than the standard mathematics for basic control theory such as differential equations and matrix algebra; the book covers the foundations of MRAC and the necessary mathematical preliminaries.