Increasing Line Combining Ability and Gray Leaf Spot Resistance in Maize by Integrating Conventional Breeding with DNA Marker Technology

Download Increasing Line Combining Ability and Gray Leaf Spot Resistance in Maize by Integrating Conventional Breeding with DNA Marker Technology PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 272 pages
Book Rating : 4.:/5 (234 download)

DOWNLOAD NOW!


Book Synopsis Increasing Line Combining Ability and Gray Leaf Spot Resistance in Maize by Integrating Conventional Breeding with DNA Marker Technology by : Barnabas Anthony Kiula

Download or read book Increasing Line Combining Ability and Gray Leaf Spot Resistance in Maize by Integrating Conventional Breeding with DNA Marker Technology written by Barnabas Anthony Kiula and published by . This book was released on 2007 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Increasing Line Combining Ability and Gray Leaf Spot Resistance in Maize by Integrating Conventional with DNA Marker Technology

Download Increasing Line Combining Ability and Gray Leaf Spot Resistance in Maize by Integrating Conventional with DNA Marker Technology PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (956 download)

DOWNLOAD NOW!


Book Synopsis Increasing Line Combining Ability and Gray Leaf Spot Resistance in Maize by Integrating Conventional with DNA Marker Technology by : Barnabas Anthony Kiula

Download or read book Increasing Line Combining Ability and Gray Leaf Spot Resistance in Maize by Integrating Conventional with DNA Marker Technology written by Barnabas Anthony Kiula and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Maize is the staple food for the majority of Tanzanians. However, maize production in the Southern highlands of Tanzania (SHT) is highly reduced by gray leaf spot disease (GLS) caused by the fungus Cercospora zea maydis. GLS reduces grain yield, kernel and silage quality. The most common GLS control methods in Tanzania include amongst others: fungicides, crop rotation, field sanitation, host resistance. These methods except host resistance are, however, either expensive or less effective or unsafe to the environment. Furthermore, conventional breeding strategies are not very effective for traits, which are lowly inherited such as GLS resistance. Lastly, to date there are few GLS resistant commercial hybrids in SHT. Thus, this study aimed to produce more commercial GLS resistant hybrids, increase farmers' hybrid choices of growing genetically different GLS insensitive hybrids, which will also provide a constant supply of GLS resistant maize cultivars in case of GLS resistance breakdown due to new GLS pathotypes. This research combined conventional breeding with molecular technologies to increase the efficacy of selecting GLS resistant hybrids and assist breeders in predicting best inbred combinations for commercial hybrid production. Studies conducted to meet the main aims were on: the prediction of best line combiners and heterosis in Tanzanian maize breeding lines through the use of amplified fragment length polymorphism, (AFLP), an association of AFLPs and the performance of phenotypic traits in maize, evaluation of maize hybrids for gray leaf spot resistance in multienvironments and finally a preliminary study on gray leaf spot PCR-based marker development with the long term objective of implementing cleaved amplified polymorphic markers (CAPS) in a marker assisted selection (MAS) strategy in the SHT maize breeding programme. Results from the study revealed that pairwise GD (genetic distance) of the lines varied from a GD of 0.13 to 0.5. High coancentry coefficients were exhibited by these lines. Joint data analyses showed that there were tighter associations between line GD and F1 traits or MPH in the intergroup than in the intragroup crosses. Combined analyses revealed that hybrids 48, 90 and 45 recorded higher stable yields and consistently low GLS scores in multienvironments. Fifteen CAPS marker bands were identified that are putatively linked to the GLS resistant genes. In summary, it was noted that strong selection during inbreeding programs should be avoided as it reduces germplasm variability. Local landraces/varieties can be improved by introgressing desirable genes into them. AFLP marker system could be effectively used for inbred genetic diversity studies in Tanzania. Intergroup crosses with high GD-MPH should be the main target for commercial hybrid production but field testing of them is inevitable to confirm their yielding potentials. Intergroups and intragroup crosses with low GD-MPH should be discarded to avoid field costs. Better F1 hybrid performance predictions can be achieved by integrating inbred GD and F1 phenotypic data. Hybrids with low GLS/high GLS resistance could be used to produce other breeding populations. Hybrids 45, 48 and 90 can be commercially preleased. Lastly a study to characterize the GLS fungus in the SHT is imperative since information on virulence of isolates is needed for long term breeding strategies against the fungus. Finally, the SHT maize germplasm has potential GLS resistant inbred lines which could be used in the deployment of genes to susceptible lines and in the development of commercial GLS resistant hybrids/open pollinated varieties/doubled haploid hybrids.

Genetic Studies of Phaeosphaeria Leaf Spot Resistance in Maize

Download Genetic Studies of Phaeosphaeria Leaf Spot Resistance in Maize PDF Online Free

Author :
Publisher : LAP Lambert Academic Publishing
ISBN 13 : 9783659365782
Total Pages : 76 pages
Book Rating : 4.3/5 (657 download)

DOWNLOAD NOW!


Book Synopsis Genetic Studies of Phaeosphaeria Leaf Spot Resistance in Maize by : Oliver Mhembere

Download or read book Genetic Studies of Phaeosphaeria Leaf Spot Resistance in Maize written by Oliver Mhembere and published by LAP Lambert Academic Publishing. This book was released on 2013 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic studies and technological edge on maize are increasingly advancing since the turn of the decade. This has come as a result of the increasing threat of pests and diseases in maize producing regions of the world. This book provides a new metric to the fungal disease, Phaeosphaeria leaf spot that has seen increased incidence and severity of epidemics in these growing areas. The author explores the inheritance of the disease and the combining ability of other secondary traits like early maturity in germplasm adaptable to Southern Africa. Thus the book confirms that phaeosphaeria leaf is a highly heritable disease combined with additive gene action and earliness is a moderately heritable trait. Hence, scientists, maize breeding houses and students will be able to fix resistance in their line breeding programs using novel methodologies and technologies that include marker assisted selection and recurrent selection, to generate resistant commercial hybrids. Finally, the general and specific combining abilities of phaeosphaeria leaf spot and other secondary maize traits are further discussed.

Resistance to Gray Leaf Spot of Maize

Download Resistance to Gray Leaf Spot of Maize PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 254 pages
Book Rating : 4.:/5 (913 download)

DOWNLOAD NOW!


Book Synopsis Resistance to Gray Leaf Spot of Maize by : Jacqueline Marie Benson

Download or read book Resistance to Gray Leaf Spot of Maize written by Jacqueline Marie Benson and published by . This book was released on 2013 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gray leaf spot (GLS) is a foliar disease of maize caused by Cercospora zeae-maydis and Cercospora zeina and quantitative resistance to GLS is important for maize production. A nested association mapping (NAM) maize population, consisting of 25 populations of 150 recombinant inbred lines, was used to identify quantitative trait loci (QTL) for GLS resistance. Trials were conducted in Blacksburg, VA, in a field with high natural incidence of GLS. A multivariate mixed model was used in ASReml3 to give the best linear unbiased predictions of disease severity ratings. QTL were selected using a general linear model selection procedure in SAS 9.2. Sixteen QTL, distributed across the maize genome, were identified using a likelihood of odds (LOD) selection threshold>4. Seven of these 16 QTL displayed allelic series with significantly higher and lower effects than the common parent allele. Near-isogenic lines (NILs) extracted from heterogeneous inbred families were developed to confirm and further finemap select QTL, targeting the loci with the greatest LOD scores from the model selection QTL analysis. Phenotypic characterization of the NILs confirmed that the loci in bins 1.04, 2.09 and 4.05 likely contribute significantly to disease resistance, with bins 1.04 and 2.09 conferring reductions in disease of 12% and 23%, respectively. In contrast, the susceptible allele in bin 4.05, which was associated with the distance between major veins, conferred an increase of 8.4%. This disease-related venation trait was confirmed using the 4.05 NILs. Genome-wide association studies revealed candidate genes related to the production of carotenoids, anthocyanins and antioxidant compounds that may play a role in cercosporin detoxification. Expression analysis of 1.05 NILs treated with cercosporin implicated a flavin-monooxygenase gene in cercosporin detoxification. Furthermore, significant associations between NAM parental allelic effects and parental phenotypes at the microscopic level for the 1.02 and 1.06 loci implicated callose plug and phenolic accumulation, respectively, in host defense. Elucidating the genetics of quantitative disease resistance loci provides breeders with valuable information that may enhance their ability to use molecular markers as a means to rapidly introgress loci that provide quantitative disease resistance.

Quantitative Genetics in Maize Breeding

Download Quantitative Genetics in Maize Breeding PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781441907653
Total Pages : 664 pages
Book Rating : 4.9/5 (76 download)

DOWNLOAD NOW!


Book Synopsis Quantitative Genetics in Maize Breeding by : Arnel R. Hallauer

Download or read book Quantitative Genetics in Maize Breeding written by Arnel R. Hallauer and published by Springer. This book was released on 2010-09-03 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm

Identification of Quantitative Trait Loci (QTL) for Gray Leaf Spot Resistance, Maturity, and Grain Yield in a Semi-tropical Recombinant Inbred Population of Maize

Download Identification of Quantitative Trait Loci (QTL) for Gray Leaf Spot Resistance, Maturity, and Grain Yield in a Semi-tropical Recombinant Inbred Population of Maize PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (656 download)

DOWNLOAD NOW!


Book Synopsis Identification of Quantitative Trait Loci (QTL) for Gray Leaf Spot Resistance, Maturity, and Grain Yield in a Semi-tropical Recombinant Inbred Population of Maize by :

Download or read book Identification of Quantitative Trait Loci (QTL) for Gray Leaf Spot Resistance, Maturity, and Grain Yield in a Semi-tropical Recombinant Inbred Population of Maize written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Identification of QTL can aide in future breeding objectives by allowing breeders either to improve a line through targeted introgressions or assist in forward breeding strategies. Such analyses may be particularly helpful in integrating exotic germplasm into a breeding program. The percentage of tropical maize germplasm grown in U.S. farmers' fields is almost nonexistent. Tropical germplasm in maize (Zea mays L.) is a valuable resource to decrease the dependence upon a limited genetic base currently used to produce commercial hybrids, extend selection limits for grain yield, and to provide an insurance function against emerging biotic and abiotic stresses. Results of research presented in this dissertation support these recommendations. Experiments were conducted to evaluate 143 S4:5 recombinant inbred lines (RILs) resulting from a cross between NC300, an all-tropical, temperate adapted line, and B104, a stiff stalk line. The 143 RILs were topcrossed to the Lancaster tester FR615xFR697 and randomly subdivided into two sets. The two sets were evaluated for resistance to GLS disease and yielding ability in three and eight North Carolina environments, respectively. Spatial trends were examined in the GLS trials. Significant (P d".01) trend effects were fitted in five of the six set-by-environment combinations, which led to improved analyses within and across environments for both sets. Ninety-three and eighty-two percent of the RILs in topcrosses (RILT) were significantly (P = 0.05) more resistant to GLS when compared to the mean of the commercial checks for set 1 and 2, respectively. Twenty-one RILs from both sets did not differ significantly (P = 0.05) for grain yield when compared to the mean of the commercial checks. RIL 2070 yielded significantly (P = 0.05) higher when compared to one commercial check, HC33. TR7322. RIL 1991 was rated the most resistant entry in set 1 and also did not differ from the mean of the commercial checks for grain yield. The RILs we.

Wheat Blast

Download Wheat Blast PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429894074
Total Pages : 157 pages
Book Rating : 4.4/5 (298 download)

DOWNLOAD NOW!


Book Synopsis Wheat Blast by : Sudheer Kumar

Download or read book Wheat Blast written by Sudheer Kumar and published by CRC Press. This book was released on 2020-04-09 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wheat Blast provides systematic and practical information on wheat blast pathology, summarises research progress and discusses future perspectives based on current understanding of the existing issues. The book explores advance technologies that may help in deciding the path for future research and development for better strategies and techniques to manage the wheat blast disease. It equips readers with basic and applied understanding on the identification of disease, its distribution and chances of further spread in new areas, its potential to cause yield losses to wheat, the conditions that favour disease development, disease prediction modelling, resistance breeding methods and management strategies against wheat blast. Features: Provides comprehensive information on wheat blast pathogen and its management under a single umbrella Covers disease identification and diagnostics which will be helpful to check introduction in new areas Discusses methods and protocol to study the different aspects of the disease such as diagnostics, variability, resistance screening, epiphytotic creation etc. Gives deep insight on the past, present and future outlook of wheat blast research progress This book’s chapters are contributed by experts and pioneers in their respective fields and it provides comprehensive insight with updated findings on wheat blast research. It serves as a valuable reference for researchers, policy makers, students, teachers, farmers, seed growers, traders, and other stakeholders dealing with wheat.

Rice Improvement

Download Rice Improvement PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030665305
Total Pages : 507 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Rice Improvement by : Jauhar Ali

Download or read book Rice Improvement written by Jauhar Ali and published by Springer Nature. This book was released on 2021-05-05 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.

GGE Biplot Analysis

Download GGE Biplot Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420040375
Total Pages : 287 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis GGE Biplot Analysis by : Weikai Yan

Download or read book GGE Biplot Analysis written by Weikai Yan and published by CRC Press. This book was released on 2002-08-28 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research data is expensive and precious, yet it is seldom fully utilized due to our ability of comprehension. Graphical display is desirable, if not absolutely necessary, for fully understanding large data sets with complex interconnectedness and interactions. The newly developed GGE biplot methodology is a superior approach to the graphical analys

The Maize Genome

Download The Maize Genome PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319974270
Total Pages : 390 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis The Maize Genome by : Jeffrey Bennetzen

Download or read book The Maize Genome written by Jeffrey Bennetzen and published by Springer. This book was released on 2018-11-24 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses advances in our understanding of the structure and function of the maize genome since publication of the original B73 reference genome in 2009, and the progress in translating this knowledge into basic biology and trait improvement. Maize is an extremely important crop, providing a large proportion of the world’s human caloric intake and animal feed, and serving as a model species for basic and applied research. The exceptionally high level of genetic diversity within maize presents opportunities and challenges in all aspects of maize genetics, from sequencing and genotyping to linking genotypes to phenotypes. Topics covered in this timely book range from (i) genome sequencing and genotyping techniques, (ii) genome features such as centromeres and epigenetic regulation, (iii) tools and resources available for trait genomics, to (iv) applications of allele mining and genomics-assisted breeding. This book is a valuable resource for researchers and students interested in maize genetics and genomics.

Doubled haploid technology in maize breeding: theory and practice

Download Doubled haploid technology in maize breeding: theory and practice PDF Online Free

Author :
Publisher : CIMMYT
ISBN 13 : 6078263005
Total Pages : 57 pages
Book Rating : 4.0/5 (782 download)

DOWNLOAD NOW!


Book Synopsis Doubled haploid technology in maize breeding: theory and practice by :

Download or read book Doubled haploid technology in maize breeding: theory and practice written by and published by CIMMYT. This book was released on with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Maize Research

Download Maize Research PDF Online Free

Author :
Publisher : Nipa
ISBN 13 : 9788119215621
Total Pages : 0 pages
Book Rating : 4.2/5 (156 download)

DOWNLOAD NOW!


Book Synopsis Maize Research by : Jiban Shrestha

Download or read book Maize Research written by Jiban Shrestha and published by Nipa. This book was released on 2023-07-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uates its readers about the methods and management of livestock during disasters. The book has covered all mad made and natural disasters and their effect on livestock and how they can be managed better for longer survival and help to the humans. Topics on how animals can sense a disaster in advance and what are the common indications given by them and how humans can benefit from it. Book elucidates the management of feeding, feed resources, production and health so as to make the livestock production economical. It is hoped that the compilation will prove useful for the researchers, planners and policy makers to understand the causes for the loss of productivity and health of livestock in drier regions and help in devising management plans towards sustenance and improvement of production.

Quantitative Genetics in Maize Breeding

Download Quantitative Genetics in Maize Breeding PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441907661
Total Pages : 669 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Quantitative Genetics in Maize Breeding by : Arnel R. Hallauer

Download or read book Quantitative Genetics in Maize Breeding written by Arnel R. Hallauer and published by Springer Science & Business Media. This book was released on 2010-09-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm

The Chickpea Genome

Download The Chickpea Genome PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319661175
Total Pages : 152 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis The Chickpea Genome by : Rajeev K. Varshney

Download or read book The Chickpea Genome written by Rajeev K. Varshney and published by Springer. This book was released on 2018-01-02 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book sheds new light on the chickpea genome sequencing and resequencing of chickpea germplasm lines and provides insights into classical genetics, cytogenetics, and trait mapping. It also offers an overview of the latest advances in genome sequencing and analysis. The growing human population, rapid climate changes and limited amounts of arable land are creating substantial challenges in connection with the availability and affordability of nutritious food for smallholder farmers in developing countries. In this context, climate smart crops are essential to alleviating the hunger of the millions of poor and undernourished people living in developing countries. In addition to cereals, grain legumes are an integral part of the human diet and provide sustainable income for smallholder farmers in the arid and semi-arid regions of the world. Among grain legumes, the chickpea (Cicer arietinum) is the second most important in terms of production and productivity. Besides being a rich source of proteins, it can fix atmospheric nitrogen through symbiosis with rhizobia and increase the input of combined nitrogen. Several abiotic stresses like drought, heat, salinity, together with biotic stresses like Fusarium wilt, Ascochyta blight, and Botrytis grey mould have led to production losses, as the chickpeas is typically grown in the harsh climates of our planet’s semi-arid regions.

Biofortification of Food Crops

Download Biofortification of Food Crops PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 8132227166
Total Pages : 489 pages
Book Rating : 4.1/5 (322 download)

DOWNLOAD NOW!


Book Synopsis Biofortification of Food Crops by : Ummed Singh

Download or read book Biofortification of Food Crops written by Ummed Singh and published by Springer. This book was released on 2016-01-22 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chapters presented in this book ‘Biofortification of Food Crops’ depict how agricultural technological interventions have true role in alleviating malnutrition. This book highlights the role of multidisciplinary approaches to cope up with the challenges of micronutrient malnutrition or hidden hunger which is an alarming public health issue in most parts of the world including India. In this endeavour, different biofortification approaches such as agronomic (or ferti-fortification), breeding, biotechnological, physiological, microbial etc. has fulfilled their different mandates of nutrient enrichment of food crops including cereals and pulses. The contents of the book proves that biofortified plants have adequate potential to nourish nutrient depleted soils, help increase crop productivity and provide nutritional benefits to plants, humans and livestock. The content and quality of information presented in this book will definitely provide multiple novel ideas of advance techniques and will stimulate innovative thoughts and directions amongst researchers and policy makers in the field of biofortification. In addition, the contributions presented in the book will be a good source of background knowledge and technical know-how to educate the readers about biofortification. The authors hope that the book entitled “Biofortification of Food Crops” would provide a suitable platform in our collective efforts for an appropriate dialogue among the scientists, researchers, entrepreneurs, policy makers and farmers in reducing the budding issues of malnutrition through novel approaches and means.

Genomic Designing of Climate-Smart Cereal Crops

Download Genomic Designing of Climate-Smart Cereal Crops PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3319933817
Total Pages : 321 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Genomic Designing of Climate-Smart Cereal Crops by : Chittaranjan Kole

Download or read book Genomic Designing of Climate-Smart Cereal Crops written by Chittaranjan Kole and published by Springer Nature. This book was released on 2020-02-28 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights modern methods and strategies to improve cereal crops in the era of climate change, presenting the latest advances in plant molecular mapping and genome sequencing. Spectacular achievements in the fields of molecular breeding, transgenics and genomics in the last three decades have facilitated revolutionary changes in cereal- crop-improvement strategies and techniques. Since the genome sequencing of rice in 2002, the genomes of over eight cereal crops have been sequenced and more are to follow. This has made it possible to decipher the exact nucleotide sequence and chromosomal positions of agroeconomic genes. Most importantly, comparative genomics and genotyping-by-sequencing have opened up new vistas for exploring available biodiversity, particularly of wild crop relatives, for identifying useful donor genes.

Cereals

Download Cereals PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387722971
Total Pages : 432 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Cereals by : Marcelo J. Carena

Download or read book Cereals written by Marcelo J. Carena and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Agriculture depends on improved cultivars, and cultivars are developed through proper plant breeding. Unfortunately, applied plant breeding programs that are focused on cereal commodity crops are under serious erosion because of lack of funding. This loss of public support affects breeding continuity, objectivity, and, perhaps equally important, the training of future plant breeders and the utilization and improvement of plant genetic resources currently available. Breeding programs should focus not only on short-term research goals but also on long-term genetic improvement of germplasm. The research products of breeding programs are important not only for food security but also for commodity-oriented public and private programs, especially in the fringes of crop production. Breeding strategies used for long-term selection are often neglected but the reality is that long-term research is needed for the success of short-term products. An excellent example is that genetically broad-based public germplasm has significantly been utilized and recycled by industry, producing billions of dollars for industry and farmers before intellectual property rights were available. Successful examples of breeding continuity have served the sustainable cereal crop production that we currently have. The fact that farmers rely on public and private breeding institutions for solving long-term challenges should influence policy makers to reverse this trend of reduced funding. Joint cooperation between industry and public institutions would be a good example to follow. The objective of this volume is to increase the utilization of useful genetic resources and increase awareness of the relative value and impact of plant breeding and biotechnology. That should lead to a more sustainable crop production and ultimately food security. Applied plant breeding will continue to be the foundation to which molecular markers are applied. Focusing useful molecular techniques on the right traits will build a strong linkage between genomics and plant breeding and lead to new and better cultivars. Therefore, more than ever there is a need for better communication and cooperation among scientists in the plant breeding and biotechnology areas. We have an opportunity to greatly enhance agricultural production by applying the results of this research to meet the growing demands for food security and environmental conservation. Ensuring strong applied plant breeding programs with successful application of molecular markers will be essential in ensuring such sustainable use of plant genetic resources.