Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Improving Simulated Annealing By Replacing Its Variables With Game Theoretic Utility Maximizers
Download Improving Simulated Annealing By Replacing Its Variables With Game Theoretic Utility Maximizers full books in PDF, epub, and Kindle. Read online Improving Simulated Annealing By Replacing Its Variables With Game Theoretic Utility Maximizers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Improving Simulated Annealing by Replacing Its Variables with Game-theoretic Utility Maximizers by : David H. Wolpert
Download or read book Improving Simulated Annealing by Replacing Its Variables with Game-theoretic Utility Maximizers written by David H. Wolpert and published by . This book was released on 2001 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Author :National Aeronautics and Space Administration (NASA) Publisher :Createspace Independent Publishing Platform ISBN 13 :9781721279869 Total Pages :32 pages Book Rating :4.2/5 (798 download)
Book Synopsis Improving Simulated Annealing by Replacing Its Variables with Game-Theoretic Utility Maximizers by : National Aeronautics and Space Administration (NASA)
Download or read book Improving Simulated Annealing by Replacing Its Variables with Game-Theoretic Utility Maximizers written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-19 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: The game-theory field of Collective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved as a side-effect. Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting significantly improves simulated annealing for a model of an economic process run over an underlying small-worlds topology. Furthermore, these experiments reveal novel small-worlds phenomena, and highlight the shortcomings of conventional mechanism design in bounded rationality domains. Wolpert, David H. and Bandari, Esfandiar and Tumer, Kagan Ames Research Center NASA/TM-2001-210930, NAS 1.15:210930
Book Synopsis Game Theory And Mechanism Design by : Y Narahari
Download or read book Game Theory And Mechanism Design written by Y Narahari and published by World Scientific. This book was released on 2014-03-13 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a self-sufficient treatment of a key tool, game theory and mechanism design, to model, analyze, and solve centralized as well as decentralized design problems involving multiple autonomous agents that interact strategically in a rational and intelligent way. The contents of the book provide a sound foundation of game theory and mechanism design theory which clearly represent the “science” behind traditional as well as emerging economic applications for the society.The importance of the discipline of game theory has been recognized through numerous Nobel prizes in economic sciences being awarded to game theorists, including the 2005, 2007, and 2012 prizes. The book distills the marvelous contributions of these and other celebrated game theorists and presents it in a way that can be easily understood even by senior undergraduate students.A unique feature of the book is its detailed coverage of mechanism design which is the art of designing a game among strategic agents so that a social goal is realized in an equilibrium of the induced game. Another feature is a large number of illustrative examples that are representative of both classical and modern applications of game theory and mechanism design. The book also includes informative biographical sketches of game theory legends, and is specially customized to a general engineering audience.After a thorough reading of this book, readers would be able to apply game theory and mechanism design in a principled and mature way to solve relevant problems in computer science (esp, artificial intelligence/machine learning), computer engineering, operations research, industrial engineering and microeconomics.
Book Synopsis Algorithms for Decision Making by : Mykel J. Kochenderfer
Download or read book Algorithms for Decision Making written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2022-08-16 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.
Book Synopsis Optimization in Operations Research by : Ronald L. Rardin
Download or read book Optimization in Operations Research written by Ronald L. Rardin and published by Prentice Hall. This book was released on 2014-01-01 with total page 936 pages. Available in PDF, EPUB and Kindle. Book excerpt: For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.
Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton
Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Book Synopsis Algorithms for Optimization by : Mykel J. Kochenderfer
Download or read book Algorithms for Optimization written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2019-03-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.
Book Synopsis Intelligent Optimisation Techniques by : Duc Pham
Download or read book Intelligent Optimisation Techniques written by Duc Pham and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a concise introduction to four important optimization techniques, presenting a range of applications drawn from electrical, manufacturing, mechanical, and systems engineering-such as the design of microstrip antennas, digital FIR filters, and fuzzy logic controllers. The book also contains the C programs used to implement the main techniques for those wishing to experiment with them.
Book Synopsis Decision Making Under Uncertainty by : Mykel J. Kochenderfer
Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.
Book Synopsis Nonlinear Assignment Problems by : Panos M. Pardalos
Download or read book Nonlinear Assignment Problems written by Panos M. Pardalos and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Assignment Problems (NAPs) are natural extensions of the classic Linear Assignment Problem, and despite the efforts of many researchers over the past three decades, they still remain some of the hardest combinatorial optimization problems to solve exactly. The purpose of this book is to provide in a single volume, major algorithmic aspects and applications of NAPs as contributed by leading international experts. The chapters included in this book are concerned with major applications and the latest algorithmic solution approaches for NAPs. Approximation algorithms, polyhedral methods, semidefinite programming approaches and heuristic procedures for NAPs are included, while applications of this problem class in the areas of multiple-target tracking in the context of military surveillance systems, of experimental high energy physics, and of parallel processing are presented. Audience: Researchers and graduate students in the areas of combinatorial optimization, mathematical programming, operations research, physics, and computer science.
Book Synopsis Numerical Algorithms by : Justin Solomon
Download or read book Numerical Algorithms written by Justin Solomon and published by CRC Press. This book was released on 2015-06-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Book Synopsis Modeling Complexity In Economic And Social Systems by : Frank Schweitzer
Download or read book Modeling Complexity In Economic And Social Systems written by Frank Schweitzer and published by World Scientific. This book was released on 2002-12-09 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Economics and the social sciences are, in fact, the “hard” sciences, as Herbert Simon argued, because the complexity of the problems dealt with cannot simply be reduced to analytically solvable models or decomposed into separate subprocesses. Nevertheless, in recent years, the emerging interdisciplinary “sciences of complexity” have provided new methods and tools for tackling these problems, ranging from complex data analysis to sophisticated computer simulations. In particular, advanced methods developed in the natural sciences have recently also been applied to social and economic problems.The twenty-one chapters of this book reflect this modern development from various modeling perspectives (such as agent-based models, evolutionary game theory, reinforcement learning and neural network techniques, time series analysis, non-equilibrium macroscopic dynamics) and for a broad range of socio-economic applications (market dynamics, technological evolution, spatial dynamics and economic growth, decision processes, and agent societies). They jointly demonstrate a shift of perspective in economics and the social sciences that is allowing a new outlook in this field to emerge.
Book Synopsis Engineering Optimization by : S. S. Rao
Download or read book Engineering Optimization written by S. S. Rao and published by New Age International. This book was released on 2000 with total page 936 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems.Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries.In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design.Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques.Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References.Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.
Book Synopsis Statistical Rethinking by : Richard McElreath
Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Book Synopsis Computational Frameworks by : Mamadou Kaba Traore
Download or read book Computational Frameworks written by Mamadou Kaba Traore and published by Elsevier. This book was released on 2017-07-07 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Frameworks: Systems, Models and Applications provides an overview of advanced perspectives that bridges the gap between frontline research and practical efforts. It is unique in showing the interdisciplinary nature of this area and the way in which it interacts with emerging technologies and techniques. As computational systems are a dominating part of daily lives and a required support for most of the engineering sciences, this book explores their usage (e.g. big data, high performance clusters, databases and information systems, integrated and embedded hardware/software components, smart devices, mobile and pervasive networks, cyber physical systems, etc.). - Provides a unique presentation on the views of frontline researchers on computational systems theory and applications in one holistic scope - Cover both computational science and engineering - Bridges the gap between frontline research and practical efforts
Book Synopsis Computational Intelligence in Optimization by : Yoel Tenne
Download or read book Computational Intelligence in Optimization written by Yoel Tenne and published by Springer Science & Business Media. This book was released on 2010-06-30 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of recent studies spans a range of computational intelligence applications, emphasizing their application to challenging real-world problems. Covers Intelligent agent-based algorithms, Hybrid intelligent systems, Machine learning and more.
Book Synopsis Information, Physics, and Computation by : Marc Mézard
Download or read book Information, Physics, and Computation written by Marc Mézard and published by Oxford University Press. This book was released on 2009-01-22 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.