Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Implementasi Deep Learning Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python Gui
Download Implementasi Deep Learning Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python Gui full books in PDF, epub, and Kindle. Read online Implementasi Deep Learning Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python Gui ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Implementasi DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI by : Vivian Siahaan
Download or read book Implementasi DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-05-02 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deep learning dalam mengenali rambu lalu lintas menggunakan dataset GTSRB, mendeteksi tumor otak menggunakan dataset MRI Brain Image, mengklasifikasikan gender, dan mengenali ekspresi wajah menggunakan dataset FER2013. Pada bab 1, Anda akan belajar membuat aplikasi GUI untuk menampilkan grafik garis menggunakan PyQt. Anda juga akan belajar bagaimana mengkonversi citra menjadi keabuan, menjadi ruang warna YUV, dan menjadi ruang warna HSV. Bab ini juga mengajarkan bagaimana menampilkan citra dan histogramnya dan merancang GUI untuk mengimplementasikannya. Pada bab 2, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan sejumlah pustaka lain untuk memprediksi digit-digit tulisan tangan menggunakan dataset MNIST. Pada bab 3, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, PIL, Pandas, NumPy, dan pustaka lain untuk mengenali rambu lalu lintas menggunakan dataset GTSRB dari Kaggle. Ada beberapa jenis rambu lalu lintas seperti batas kecepatan, dilarang masuk, rambu lalu lintas, belok kiri atau kanan, anak-anak menyeberang, tidak ada kendaraan berat yang lewat, dll. Klasifikasi rambu lalu lintas adalah proses untuk mengidentifikasi kelas rambu lalu lintas tersebut. Pada proyek Python ini, Anda akan membangun model jaringan saraf tiruan (deep neural network) yang dapat mengklasifikasikan rambu lalu lintas dalam citra ke dalam kategori yang berbeda. Dengan model ini, Anda akan dapat membaca dan memahami rambu lalu lintas yang merupakan pekerjaan yang sangat penting bagi semua kendaraan otonom. Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan pustaka lainnya untuk melakukan pendeteksian tumor otak menggunakan dataset Brain Image MRI yang disediakan oleh Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan library lain untuk melakukan klasifikasi gender menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 6, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka lain untuk melakukan pengenalan ekspresi wajah menggunakan dataset FER2013 yang disediakan oleh Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Book Synopsis Step by Step Tutorials on Deep Learning Using Scikit-Learn, Keras, and Tensorflow with Python GUI by : Rismon Hasiholan Sianipar
Download or read book Step by Step Tutorials on Deep Learning Using Scikit-Learn, Keras, and Tensorflow with Python GUI written by Rismon Hasiholan Sianipar and published by Independently Published. This book was released on 2021-04-24 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion.In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT).In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https: //www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose.In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https: //www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose.In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https: //www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose.In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https: //www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purp
Book Synopsis Tutorial Langkah Demi Langkah DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan TensorFlow Dengan Python GUI by : Vivian Siahaan
Download or read book Tutorial Langkah Demi Langkah DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan TensorFlow Dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-07-19 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Step by Step Tutorials Image Classification Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Pada bab 1, Anda akan belajar dasar-dasar penggunaan PyQt untuk pemrosesan citra digital. Sejumlah projek Python GUI yang diimplementasikan di sini adalah mengkonversi citra RGB menjadi keabuan, mengkonversi citra RGB menjadi citra YUV, mengkonversi citra RGB menjadi citra HSV, menapis citra, menampilkan histogram citra, menampilkan histogram citra tertapis, dan memanfaatkan widget checkbox untuk penapisan citra, dan menerapkan ambang batas citra. Pada bab 2, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi spesies monyet menggunakan dataset 10 Monkey Species yang disediakan oleh Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Pada tutorial ini, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustakan lain untuk mengklasifikasi batu, kertas, dan gunting menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi pesawat, mobil, dan kapal menggunakan dataset Multiclass-image-dataset-airplane-car-ship yang disediakan oleh Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi face mask menggunakan dataset Face Mask Detection Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Book Synopsis SEVEN BOOKS IN ONE: Sinyal Digital, Citra Digital, Machine Learning, Deep Learning, dan Data Science dengan Python GUI by : Vivian Siahaan
Download or read book SEVEN BOOKS IN ONE: Sinyal Digital, Citra Digital, Machine Learning, Deep Learning, dan Data Science dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-07-24 with total page 2192 pages. Available in PDF, EPUB and Kindle. Book excerpt: BUKU 1: Konsep dan Implementasi Pemrograman Python Buku ini merupakan buku teks pemrograman komputer menggunakan Python yang difokuskan untuk pembelajaran efektif. Sengaja dirancang untuk pelbagai tingkat ketertarikan dan kemampuan pembelajar, buku ini cocok untuk siswa SMA/SMK, mahasiswa, insinyur, dan bahkan peneliti dalam berbagai displin ilmu. Tidak ada pengalaman pemrograman yang diperlukan, dan hanya sedikit kemampun aljabar tingkat sekolah menenga atas yang diperlukan. Buku ini memang dirancang untuk mengambil rute tradisional, dengan lebih dahulu menekankan sintaksis-sintaksis dasar, struktur-struktur kendali, fungsi, dekomposisi prosedural, dan struktur data built-in seperti list, set, dan kamus (dictionary). Panduan langkah-demi-langkah di dalamnya diharapkan bisa membantu kepercayaan diri pembaca untuk menjadi programer yang bisa menyelesaikan permasalahan-permasalahan pemrograman. Sejumlah contoh disediakan untuk mendemonstrasikan bagaimana menerapkan konsep-konsep yang telah disajikan terhadap sejumlahan tantangan pemrograman. Pada Bab 1, Anda akan diajari mengenal IDE Spyder untuk memprogram Python dan mengetahui sintaksis dasar dari program sederhana Python. Pada Bab 2, Anda akan belajar: Mendefinisikan dan menggunakan variabel dan konstanta; Memahami sejumlah watak dan keterbatasan bilangan integer (bilangan bulat) dan titik-mengambang (bilangan pecahan); Memahami pentingnya komentar dan tataletak kode; Menulis ekspresi aritmatik dan statemen penugasan; Menciptakan program yang membaca dan memproses masukan, dan menampilkan hasilnya; Bagaimana menggunakan string Python; Menciptakan program grafika menggunakan sejumlah bangun dasar dan teks. Pada Bab 3, Anda akan belajar: Mengimplementasikan keputusan menggunakan statemen if; Membandingkan bilangan integer, titik-mengambang, dan string; Menuliskan statemen menggunakan ekspresi Boolean; Memvalidasi masukan user. Pada Bab 4, Anda akan belajar: Mengimplementasikan loop while dan for; Menjadi familiar dengan algoritma-algoritma yang melibatkan loop; Memahami loop bersarang; Memproses string. Pada Bab 5, Anda akan belajar: Bagaimana mengimplementasikan fungsi; Menjadi familiar dengan konsep pelewatan parameter; Mengembangkan strategi pendekomposisian pekerjaan kompleks menjadi pekerjaan-pekerjaan yang lebih mudah; Mampu menentukan skop variabel. Pada Bab 6, Anda akan belajar: Mengumpulkan elemen-elemen menggunkan list; Menggunakan loop for untuk menjelajah list; Menggunakan sejumlah algoritma umum untuk memproses list; Menggunakan list dengan fungsi; Bekerja dengan tabel data. Pada Bab 7, Anda akan belajar: Membangun dan menggunakan kontainer set; Menggunakan operasi-operasi set untuk memproses data; Membangun dan menggunakan kontainer dictionary; Menggunakan dictionary untuk tabel; Menggunakan struktur kompleks. BUKU 2: SINYAL DAN CITRA DIGITAL dengan PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI”. Anda bisa mengaksesnya di Amazon maupun di Google Books. Pada buku ini, Anda akan belajar bagaimana menggunakan OpenCV, NumPy dan sejumlah pustaka lain untuk melakukan pemrosesan sinyal, pemrosesan citra, deteksi objek, dan ekstraksi fitur dengan memanfaatkan Python GUI (PyQt). Anda akan belajar cara memfilter sinyal, mendeteksi tepi dan segmen, dan menekan derau pada citra dengan memanfaatkan PyQt. Anda juga akan belajar cara mendeteksi objek (wajah, mata, dan mulut) menggunakan Haar Cascades dan cara mendeteksi fitur pada citra menggunakan Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), dan Features from Accelerated Uji Segmen (FAST). Pada bab 1, Anda akan mempelajari secara langkah demi langkah: membuat aplikasi gui sederhana; menggunakan tombol radio; mengelompokkan tombol radio; menggunakan widget kotak centang; menggunakan dua grup kotak centang; memahami sinyal dan slot; mengonversi jenis data; menggunakan widget spin box; menggunakan scrollbar dan slider; menggunakan list widget; menggunakan kotak kombo; dan menggunakan widget Table. Pada bab 2, Anda akan mempelajari secara langkah demi langkah: membuat grafik garis sederhana; membuat grafik garis sederhana dengan python gui; membuat grafik garis sederhana dengan python gui: bagian 2; membuat dua atau lebih banyak grafik di sumbu yang sama;membuat dua sumbu dalam satu kanvas; menggunakan dua widget;menggunakan dua widget, masing-masing memiliki dua sumbu; menggunakan sumbu dengan tingkat opacity tertentu; memilih warna garis dari combo box; menghitung fast fourier transform; membuat gui untuk FFT; membuat gui untuk FFT dengan beberapa sinyal input lain; membuat gui untuk sinyal bising; membuat gui untuk penapisan sinyal berderau; dan membuat gui untuk penapisan sinyal wav. Pada bab 3, Anda akan mempelajari secara langkah demi langkah: mengkonversi citra RGB menjadi grayscale; mengubah citra RGB menjadi citra YUV; mengkonversi citra RGB menjadi citra HSV; memfilter citra; menampilkan histogram citra; menampilkan histogram citra tertapis; memfilter citra dengan memanfaatkan opsi pada kotak centang; menerapkan ambang batas citra; dan menerapkan ambang batas citra adaptif. Pada bab 4, Anda akan mempelajari secara langkah demi langkah: membangkitkan dan menampilkan citra berderau; menerapkan deteksi tepi pada citra; menerapkan segmentasi citra menggunakan algoritma multiple thresholding dan k-means; dan menerapkan penekanan derau citra. Pada bab 5, Anda akan mempelajari secara langkah demi langkah: mendeteksi wajah, mata, dan mulut menggunakan haar cascades; mendeteksi wajah menggunakan haar cascades dengan pyqt; mendeteksi mata, dan mulut menggunakan haar cascades dengan pyqt; dan mengekstraksi objek yang terdeteksi. Pada bab 6, Anda akan mempelajari secara langkah demi langkah: mendeteksi fitur citra menggunakan deteksi harris corner; mendeteksi fitur citra menggunakan deteksi sudut shi-tomasi; mendeteksi fitur citra menggunakan Scale-Invariant Feature Transform (SIFT); dan mendeteksi fitur citra menggunakan Features from Accelerated Uji Segmen (FAST). BUKU 3: IMPLEMENTASI MACHINE LEARNING DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI”. Anda bisa mengaksesnya di Amazon maupun di Google Books. Pada buku ini, Anda akan mempelajari cara menggunakan NumPy, Pandas, OpenCV, Scikit-Learn, dan pustaka lain untuk memplot grafik dan memproses citra digital. Kemudian, Anda akan mempelajari cara mengklasifikasikan fitur menggunakan model Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), dan K-Nearest Neighbor (KNN). Anda juga akan belajar cara mengekstraksi fitur menggunakan algoritma Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) dan menggunakannya dalam pembelajaran mesin (machine learning). Pada Bab 1, Anda akan mempelajari dasar-dasar penggunakan Python GUI dengan Qt Designer. Pada Bab 2, Anda akan mempelajari: Langkah-Langkah Menciptakan Grafik Garis Sederhana; Langkah-Langkah Menampilkan Grafik Garis dengan Python GUI: Bagian 1; Langkah-Langkah Menampilkan Grafik Garis dengan Python GUI: Bagian 2; Langkah-Langkah Menampilkan Dua atau Lebih Grafik pada Sumbu yang Sama; Langkah-Langkah Menciptakan Dua Sumbu pada Satu Canvas; Langkah-Langkah Menggunakan Dua Widget; Langkah-Langkah Menggunakan Dua Widget, Masing-Masing Memiliki Dua Sumbu; Langkah-Langkah Menggunakan Sumbu dengan Tingkat Keburaman Tertentu; Langkah-Langkah Memilih Warna Garis dari Combo Box; Langkah-Langkah Menghitung Fast Fourier Transform; Langkah-Langkah Menciptakan GUI untuk FFT; Langkah-Langkan Menciptakan GUI untuk FFT atas Sinyal-Sinyal Masukan Lain; Langkah-Langkah Menciptakan GUI untuk Sinyal Berderau; Langkah-Langkah Menciptakan GUI untuk Penapisan Sinyal Berderau; Langkah-Langkah Mencipakan GUI untuk Penapisan Sinyal Wav; Langkah-Langkah Mengkonversi Citra RGB Menjadi Keabuan; Langkah-Langkah Mengkonversi Citra RGB Menjadi Citra YUV; Langkah-Langkah Mengkonversi Citra RGB Menjadi Citra HSV; Langkah-Langkah Menapis Citra; Langkah-Langkah Menampilkan Histogram Citra ; Langkah-Langkah Menampilkan Histogram Citra Tertapis; Langkah-Langkah Menapis Citra: Memanfaatkan CheckBox; Langkah-Langkah Mengimplementasikan Ambang Batas Citra; dan Langkah-Langkah Mengimplementasikan Ambang Batas Adaptif. Pada Bab 3, Anda akan mempelajari: Langkah-Langkah Implementasi Perceptron; Langkah-Langkah Implementasi Perceptron dengan PyQt; Langkah-Langkah Implementasi Adaline (ADAptive LInear NEuron); dan Langkah-Langkah Implementasi Adaline dengan PyQt. Pada Bab 4, Anda akan mempelajari: Langkah-Langkah Implementasi Perceptron Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Model Logistic Regression (LR); Langkah-Langkah Implementasi Model Logistic Regression dengan PyQt; Langkah-Langkah Implementasi Model Logistic Regression Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Mode Support Vector Machine (SVM) Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Decision Tree (DT) Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Model Random Forest (RF) Menggunakan Scikit-Learn; dan Langkah-Langkah Implementasi Model K-Nearest Neighbor (KNN) Menggunakan Scikit-Learn. Pada Bab 5, Anda akan mempelajari: Langkah-Langkah Implementasi Principal Component Analysis (PCA); Langkah-Langkah Implementasi Principal Component Analysis (PCA); Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Principal Component Analysis (PCA) Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA); Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA) dengan scikit-learn; Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA); Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Kernel Principal Component Analysis (KPCA) Menggunakan Scikit-Learn; dan Langkah-Langkah Implementasi Kernel Principal Component Analysis (KPCA) Menggunakan Scikit-Learn dengan PyQt. Pada Bab 6, Anda akan mempelajari: Langkah-Langkah Memuat Dataset MNIST; Langkah-Langkah Memuat Dataset MNIST dengan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; dan Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt. Pada Bab 7, Anda akan mempelajari: Langkah-Langkah Membangkitkan dan Menampilkan Citra Berderau; Langkah-Langkah Mengimplemantasikan Deteksi Tepi pada Citra; Langkah-Langkah Mengimplementasikan Segmentasi Menggunakan Ambang Batas Jamak dan Algoritma K-Means; Langkah-Langkah Mengimplementasikan Penekanan Derau pada Citra; Langkah-Langkah Mendeteksi Wajah, Mata, dan Mulut dengan Haar Cascades; Langkah-Langkah Mendeteksi Wajah Menggunakan Haar Cascades dengan PyQt; Langkah-Langkah Mendeteksi Mata dan Mulut Menggunakan Haar Cascades dengan PyQt; Langkah-Langkah Mengekstraksi Objek-Objek Terdeteksi; Langkah-Langkah Mendeteksi Fitur Citra dengan Harris Corner Detection; Langkah-Langkah Mendeteksi Fitur Citra dengan Shi-Tomasi Corner Detection; Langkah-Langkah Mendeteksi Fitur Citra dengan Scale-Invariant Feature Transform (SIFT) ; dan Langkah-Langkah Mendeteksi Fitur Citra dengan Accelerated Segment Test (FAST). BUKU 4: Implementasi DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deep learning dalam mengenali rambu lalu lintas menggunakan dataset GTSRB, mendeteksi tumor otak menggunakan dataset MRI Brain Image, mengklasifikasikan gender, dan mengenali ekspresi wajah menggunakan dataset FER2013. Pada bab 1, Anda akan belajar membuat aplikasi GUI untuk menampilkan grafik garis menggunakan PyQt. Anda juga akan belajar bagaimana mengkonversi citra menjadi keabuan, menjadi ruang warna YUV, dan menjadi ruang warna HSV. Bab ini juga mengajarkan bagaimana menampilkan citra dan histogramnya dan merancang GUI untuk mengimplementasikannya. Pada bab 2, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan sejumlah pustaka lain untuk memprediksi digit-digit tulisan tangan menggunakan dataset MNIST. Pada bab 3, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, PIL, Pandas, NumPy, dan pustaka lain untuk mengenali rambu lalu lintas menggunakan dataset GTSRB dari Kaggle. Ada beberapa jenis rambu lalu lintas seperti batas kecepatan, dilarang masuk, rambu lalu lintas, belok kiri atau kanan, anak-anak menyeberang, tidak ada kendaraan berat yang lewat, dll. Klasifikasi rambu lalu lintas adalah proses untuk mengidentifikasi kelas rambu lalu lintas tersebut. Pada proyek Python ini, Anda akan membangun model jaringan saraf tiruan (deep neural network) yang dapat mengklasifikasikan rambu lalu lintas dalam citra ke dalam kategori yang berbeda. Dengan model ini, Anda akan dapat membaca dan memahami rambu lalu lintas yang merupakan pekerjaan yang sangat penting bagi semua kendaraan otonom. Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan pustaka lainnya untuk melakukan pendeteksian tumor otak menggunakan dataset Brain Image MRI yang disediakan oleh Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan library lain untuk melakukan klasifikasi gender menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 6, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka lain untuk melakukan pengenalan ekspresi wajah menggunakan dataset FER2013 yang disediakan oleh Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 5: Panduan Praktis Deep Learning Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deteksi wajah, mata, dan mulut menggunakan Haar Cascades, klasifikasi/prediksi buah, klasifikasi/prediksi kucing/anjing, klasifikasi/prediksi mebel, klasifikasi/prediksi mode (fashion). Pada bab 1, Anda akan belajar bagaimana menggunakan pustaka OpenCV, PIL, NumPy dan pustaka lain untuk melakukan deteksi wajah, mata, dan mulut menggunakan Haar Cascades dengan Python GUI (PyQt). Pada bab 2, Anda akan mempelajari bagaimana memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka-pustaka lain untuk mengimplementasikan klasifikasi buah menggunakan dataset Fruits 360 yang disediakan oleh Kaggle (https://www.kaggle.com/moltean/fruits/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk klasifikasi kucing/anjing menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustakan lain untuk mendeteksi atau mengklasifikasi mebel menggunakan dataset Furniture Detector yang disediakan oleh Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah modul lain untuk melakukan klasifikasi terhadap citra-citra mode menggunakan dataset Fashion MNIST yang disediakan oleh Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 6: Tutorial Langkah Demi Langkah DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan TensorFlow Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Step by Step Tutorials Image Classification Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Pada bab 1, Anda akan belajar dasar-dasar penggunaan PyQt untuk pemrosesan citra digital. Sejumlah projek Python GUI yang diimplementasikan di sini adalah mengkonversi citra RGB menjadi keabuan, mengkonversi citra RGB menjadi citra YUV, mengkonversi citra RGB menjadi citra HSV, menapis citra, menampilkan histogram citra, menampilkan histogram citra tertapis, dan memanfaatkan widget checkbox untuk penapisan citra, dan menerapkan ambang batas citra. Pada bab 2, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi spesies monyet menggunakan dataset 10 Monkey Species yang disediakan oleh Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Pada tutorial ini, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustakan lain untuk mengklasifikasi batu, kertas, dan gunting menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi pesawat, mobil, dan kapal menggunakan dataset Multiclass-image-dataset-airplane-car-ship yang disediakan oleh Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi face mask menggunakan dataset Face Mask Detection Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 7: Klasifikasi Citra Berbasis Deep Learning Menggunakan Scikit-Learn, Tensorflow, Dan Keras Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan klasifikasi citra. Pada Bab 1, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy danb sejumlah pustaka lain untuk klasifikasi cuaca menggunakan dataset Multi-class Weather Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). Pada Bab 2, Anda akan menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengenali jenis bunga menggunakan dataset Flowers Recognition dataset yang disediakan oleh Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 3, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi plat nomor kendaraan menggunakan dataset Car License Plate Detection yang disediakan oleh Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 4, Anda akan belajar bagaimana menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk melakukan pengenalan bahasa isyarat menggunakan Sign Language Digits Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 5, Anda akan belajar bagaimana menerapkan pustaka TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi keretakan permukaan beton menggunakan dataset Surface Crack Detection yang disediakan oleh Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Book Synopsis Klasifikasi Citra Berbasis Deep Learning Menggunakan Scikit-Learn, Tensorflow, Dan Keras Dengan Python GUI by : Vivian Siahaan
Download or read book Klasifikasi Citra Berbasis Deep Learning Menggunakan Scikit-Learn, Tensorflow, Dan Keras Dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-07-16 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan klasifikasi citra. Pada Bab 1, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy danb sejumlah pustaka lain untuk klasifikasi cuaca menggunakan dataset Multi-class Weather Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). Pada Bab 2, Anda akan menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengenali jenis bunga menggunakan dataset Flowers Recognition dataset yang disediakan oleh Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 3, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi plat nomor kendaraan menggunakan dataset Car License Plate Detection yang disediakan oleh Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 4, Anda akan belajar bagaimana menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk melakukan pengenalan bahasa isyarat menggunakan Sign Language Digits Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 5, Anda akan belajar bagaimana menerapkan pustaka TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi keretakan permukaan beton menggunakan dataset Surface Crack Detection yang disediakan oleh Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Book Synopsis Panduan Praktis Deep Learning Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI by : Vivian Siahaan
Download or read book Panduan Praktis Deep Learning Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-05-04 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deteksi wajah, mata, dan mulut menggunakan Haar Cascades, klasifikasi/prediksi buah, klasifikasi/prediksi kucing/anjing, klasifikasi/prediksi mebel, klasifikasi/prediksi mode (fashion). Pada bab 1, Anda akan belajar bagaimana menggunakan pustaka OpenCV, PIL, NumPy dan pustaka lain untuk melakukan deteksi wajah, mata, dan mulut menggunakan Haar Cascades dengan Python GUI (PyQt). Pada bab 2, Anda akan mempelajari bagaimana memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka-pustaka lain untuk mengimplementasikan klasifikasi buah menggunakan dataset Fruits 360 yang disediakan oleh Kaggle (https://www.kaggle.com/moltean/fruits/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk klasifikasi kucing/anjing menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustakan lain untuk mendeteksi atau mengklasifikasi mebel menggunakan dataset Furniture Detector yang disediakan oleh Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah modul lain untuk melakukan klasifikasi terhadap citra-citra mode menggunakan dataset Fashion MNIST yang disediakan oleh Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Book Synopsis The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI by : Rismon Hasiholan Sianipar
Download or read book The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI written by Rismon Hasiholan Sianipar and published by . This book was released on 2021-04-11 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 datasetIn Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram.In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose.In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose.In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https: //www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose.In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https: //www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose.In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https: //www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpo
Book Synopsis KPI Mega Library by : RACHAD. BAROUDI
Download or read book KPI Mega Library written by RACHAD. BAROUDI and published by Createspace Independent Publishing Platform. This book was released on 2016-10-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this guide book is to give the reader a quick and effective access to the most appropriate Key Performance Indicator (KPI). The 36,000 KPIs are categorized in a logical and alphabetical order. Many organizations are spending a lot of funds on building their strategic planning and performance management capabilities. One of the current challenges is the difficulty to know what KPIs are used in similar situations. This book main objective is to acquaint the reader with available KPIs measuring performance of a specific industry, sector, international topic, and functional area. The book is divided into three sections:1) Organization Section: 32 Industries | 385 Functions | 11,000 KPIs2) Government Section: 32 Sectors | 457 Functions | 12,000 KPIs3) International Section: 24 Topics | 39 Sources | 13,000 KPIsREVIEWS: "It's very interesting book. Let me also use this opportunity to congratulate you on it" Augustine Botwe, M&E Consultant - Sweden "Thank you for this book. As an OD and performance consultant, it will be great to have a reference like this to help assist clients and not reinvent the wheel. Congratulations on making this happen with admiration" Sheri Chaney Jones - Ohio, USA"Fabulous book! I bought it for my company. Good work!" Elizabeth Amini, CEO, Strategist - LA, USA"Congratulations for this tremendous work you have done with this book!" Roxana Goldstein, Monitoring Consultant - Argentina "This looks like a very important reference for me in my BSC consulting practice." Edy Chakra, Partner, ADDIMA Consulting - UK"Congratulations for your book, it is very comprehensive!" Rafael Lemaitre - Manager at Palladium Group - Spain"Many thanks for sharing this valuable information. I will use as reference in my work." Edi Indriyotomo - Senior IT Mgr. - Indonesia"I am reading my copy of your great book "KPI Mega Library" which I bought from Amazon. Thank you, great effort!" Basel A - Kuwait"It's a great idea, for folks who don't have a clue where to start. If you're a strategy consultant who shapes strategies for your clients, you need a tailored set of performance metrics" Shelley Somerville, Social Change Strategist - LA, USA"A very comprehensive list of KPIs across a number of functions, industries, etc. As an organizational consultant, I could use this resource as a jumping off point to discuss KPIs with a client based on their particular needs. This book could be a great tool to pick and choose the correct KPIs based on a number of criteria" Anthony Bussard - Dynamic, Innovative HR Effectiveness Consultant - Boston
Book Synopsis Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, and TensorFlow with PYTHON GUI by : Vivian Siahaan
Download or read book Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, and TensorFlow with PYTHON GUI written by Vivian Siahaan and published by . This book was released on 2021-06-03 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book implements deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar).
Book Synopsis Python for Data Analysis by : Wes McKinney
Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Book Synopsis In-Depth Tutorials: Deep Learning Using Scikit-Learn, Keras, and TensorFlow with Python GUI by : Vivian Siahaan
Download or read book In-Depth Tutorials: Deep Learning Using Scikit-Learn, Keras, and TensorFlow with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-06-05 with total page 1459 pages. Available in PDF, EPUB and Kindle. Book excerpt: BOOK 1: LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI In this book, you will learn how to use NumPy, Pandas, OpenCV, Scikit-Learn and other libraries to how to plot graph and to process digital image. Then, you will learn how to classify features using Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) models. You will also learn how to extract features using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) algorithms and use them in machine learning. In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. You will also learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, Tutorial Steps To Implement Image Denoising, Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, Tutorial Steps To Extract Detected Objects, Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). In Chapter 4, In this tutorial, you will learn how to use Pandas, NumPy and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron, Tutorial Steps To Implement Perceptron with PyQt, Tutorial Steps To Implement Adaline (ADAptive LInear NEuron), and Tutorial Steps To Implement Adaline with PyQt. In Chapter 5, you will learn how to use the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API and to perform classification using perceptron, Adaline (adaptive linear neuron), and other models. The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron Using Scikit-Learn, Tutorial Steps To Implement Perceptron Using Scikit-Learn with PyQt, Tutorial Steps To Implement Logistic Regression Model, Tutorial Steps To Implement Logistic Regression Model with PyQt, Tutorial Steps To Implement Logistic Regression Model Using Scikit-Learn with PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn, Tutorial Steps To Implement Decision Tree (DT) Using Scikit-Learn, Tutorial Steps To Implement Random Forest (RF) Using Scikit-Learn, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Using Scikit-Learn. In Chapter 6, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to implement different approaches for reducing the dimensionality of a dataset using different feature selection techniques. You will learn about three fundamental techniques that will help us to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern age of technology. You will learn the following topics: Principal Component Analysis (PCA) for unsupervised data compression, Linear Discriminant Analysis (LDA) as a supervised dimensionality reduction technique for maximizing class separability, Nonlinear dimensionality reduction via Kernel Principal Component Analysis (KPCA). You will learn: Tutorial Steps To Implement Principal Component Analysis (PCA), Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn, Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Linear Discriminant Analysis (LDA), Tutorial Steps To Implement Linear Discriminant Analysis (LDA) with Scikit-Learn, Tutorial Steps To Implement Linear Discriminant Analysis (LDA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn, and Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn with PyQt. In Chapter 7, you will learn how to use Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. You will learn: Tutorial Steps To Load MNIST Dataset, Tutorial Steps To Load MNIST Dataset with PyQt, Tutorial Steps To Implement Perceptron With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement , Tutorial Steps To Implement Support Vector Machine (SVM) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt. BOOK 2: THE PRACTICAL GUIDES ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. BOOK 3: STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. BOOK 4: Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI In this book, implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). BOOK 5: Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI In this book, implement deep learning-based image classification on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize flower using Flowers Recognition dataset provided by Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). BOOK 6: Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI In this book, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar).
Book Synopsis Computer Networking Essentials by : Charlemagne Mendoza
Download or read book Computer Networking Essentials written by Charlemagne Mendoza and published by Delve Publishing. This book was released on 2016-11-30 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer networking refers to the study and analysis of the communication process among various computing devices or computer systems that are linked or networked, together to exchange information and share resources. Thios book provides an introduction to the essentials of computer networking.
Book Synopsis Enter the Animal by : Teya Brooks Pribac
Download or read book Enter the Animal written by Teya Brooks Pribac and published by Sydney University Press. This book was released on 2021-02-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, grief and spirituality have been jealously guarded as uniquely human experiences. Although non-human animal grief has been acknowledged in recent times, its potency has not been recognised as equal to human grief. Anthropocentric philosophical questions still underpin both academic and popular discussions. In Enter the Animal, Teya Brooks Pribac examines what we do and don’t know about grief and spirituality. She explores the growing body of knowledge about attachment and loss and how they shape the lives of both human and non-human animals. A valuable addition to the vibrant interdisciplinary conversation about animal subjectivity, Enter the Animal identifies conceptual and methodological approaches that have contributed to the prejudice against nonhuman animals. It offers a compelling theoretical base for the consideration of grief and spirituality across species and highlights important ethical implications for how humans treat other animals.
Book Synopsis THREE BOOKS IN ONE: Machine Learning dan Deep Learning dengan Python GUI by : Vivian Siahaan
Download or read book THREE BOOKS IN ONE: Machine Learning dan Deep Learning dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-05-07 with total page 1160 pages. Available in PDF, EPUB and Kindle. Book excerpt: BUKU 1: IMPLEMENTASI MACHINE LEARNING DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI”. Anda bisa mengaksesnya di Amazon maupun di Google Books. Pada buku ini, Anda akan mempelajari cara menggunakan NumPy, Pandas, OpenCV, Scikit-Learn, dan pustaka lain untuk memplot grafik dan memproses citra digital. Kemudian, Anda akan mempelajari cara mengklasifikasikan fitur menggunakan model Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), dan K-Nearest Neighbor (KNN). Anda juga akan belajar cara mengekstraksi fitur menggunakan algoritma Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) dan menggunakannya dalam pembelajaran mesin (machine learning). Pada Bab 1, Anda akan mempelajari dasar-dasar penggunakan Python GUI dengan Qt Designer. Pada Bab 2, Anda akan mempelajari: Langkah-Langkah Menciptakan Grafik Garis Sederhana; Langkah-Langkah Menampilkan Grafik Garis dengan Python GUI: Bagian 1; Langkah-Langkah Menampilkan Grafik Garis dengan Python GUI: Bagian 2; Langkah-Langkah Menampilkan Dua atau Lebih Grafik pada Sumbu yang Sama; Langkah-Langkah Menciptakan Dua Sumbu pada Satu Canvas; Langkah-Langkah Menggunakan Dua Widget; Langkah-Langkah Menggunakan Dua Widget, Masing-Masing Memiliki Dua Sumbu; Langkah-Langkah Menggunakan Sumbu dengan Tingkat Keburaman Tertentu; Langkah-Langkah Memilih Warna Garis dari Combo Box; Langkah-Langkah Menghitung Fast Fourier Transform; Langkah-Langkah Menciptakan GUI untuk FFT; Langkah-Langkan Menciptakan GUI untuk FFT atas Sinyal-Sinyal Masukan Lain; Langkah-Langkah Menciptakan GUI untuk Sinyal Berderau; Langkah-Langkah Menciptakan GUI untuk Penapisan Sinyal Berderau; Langkah-Langkah Mencipakan GUI untuk Penapisan Sinyal Wav; Langkah-Langkah Mengkonversi Citra RGB Menjadi Keabuan; Langkah-Langkah Mengkonversi Citra RGB Menjadi Citra YUV; Langkah-Langkah Mengkonversi Citra RGB Menjadi Citra HSV; Langkah-Langkah Menapis Citra; Langkah-Langkah Menampilkan Histogram Citra ; Langkah-Langkah Menampilkan Histogram Citra Tertapis; Langkah-Langkah Menapis Citra: Memanfaatkan CheckBox; Langkah-Langkah Mengimplementasikan Ambang Batas Citra; dan Langkah-Langkah Mengimplementasikan Ambang Batas Adaptif. Pada Bab 3, Anda akan mempelajari: Langkah-Langkah Implementasi Perceptron; Langkah-Langkah Implementasi Perceptron dengan PyQt; Langkah-Langkah Implementasi Adaline (ADAptive LInear NEuron); dan Langkah-Langkah Implementasi Adaline dengan PyQt. Pada Bab 4, Anda akan mempelajari: Langkah-Langkah Implementasi Perceptron Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Model Logistic Regression (LR); Langkah-Langkah Implementasi Model Logistic Regression dengan PyQt; Langkah-Langkah Implementasi Model Logistic Regression Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Mode Support Vector Machine (SVM) Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Decision Tree (DT) Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Model Random Forest (RF) Menggunakan Scikit-Learn; dan Langkah-Langkah Implementasi Model K-Nearest Neighbor (KNN) Menggunakan Scikit-Learn. Pada Bab 5, Anda akan mempelajari: Langkah-Langkah Implementasi Principal Component Analysis (PCA); Langkah-Langkah Implementasi Principal Component Analysis (PCA); Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Principal Component Analysis (PCA) Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA); Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA) dengan scikit-learn; Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA) Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Kernel Principal Component Analysis (KPCA) Menggunakan Scikit-Learn; dan Langkah-Langkah Implementasi Kernel Principal Component Analysis (KPCA) Menggunakan Scikit-Learn dengan PyQt. Pada Bab 6, Anda akan mempelajari: Langkah-Langkah Memuat Dataset MNIST; Langkah-Langkah Memuat Dataset MNIST dengan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; dan Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt. Pada Bab 7, Anda akan mempelajari: Langkah-Langkah Membangkitkan dan Menampilkan Citra Berderau; Langkah-Langkah Mengimplemantasikan Deteksi Tepi pada Citra; Langkah-Langkah Mengimplementasikan Segmentasi Menggunakan Ambang Batas Jamak dan Algoritma K-Means; Langkah-Langkah Mengimplementasikan Penekanan Derau pada Citra; Langkah-Langkah Mendeteksi Wajah, Mata, dan Mulut dengan Haar Cascades; Langkah-Langkah Mendeteksi Wajah Menggunakan Haar Cascades dengan PyQt; Langkah-Langkah Mendeteksi Mata dan Mulut Menggunakan Haar Cascades dengan PyQt; Langkah-Langkah Mengekstraksi Objek-Objek Terdeteksi; Langkah-Langkah Mendeteksi Fitur Citra dengan Harris Corner Detection; Langkah-Langkah Mendeteksi Fitur Citra dengan Shi-Tomasi Corner Detection; Langkah-Langkah Mendeteksi Fitur Citra dengan Scale-Invariant Feature Transform (SIFT) ; dan Langkah-Langkah Mendeteksi Fitur Citra dengan Accelerated Segment Test (FAST). BUKU 2: IMPLEMENTASI DEEP LEARNING MENGGUNAKAN SCIKIT-LEARN, KERAS, DAN TENSORFLOW DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deep learning dalam mengenali rambu lalu lintas menggunakan dataset GTSRB, mendeteksi tumor otak menggunakan dataset MRI Brain Image, mengklasifikasikan gender, dan mengenali ekspresi wajah menggunakan dataset FER2013. Pada bab 1, Anda akan belajar membuat aplikasi GUI untuk menampilkan grafik garis menggunakan PyQt. Anda juga akan belajar bagaimana mengkonversi citra menjadi keabuan, menjadi ruang warna YUV, dan menjadi ruang warna HSV. Bab ini juga mengajarkan bagaimana menampilkan citra dan histogramnya dan merancang GUI untuk mengimplementasikannya. Pada bab 2, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan sejumlah pustaka lain untuk memprediksi digit-digit tulisan tangan menggunakan dataset MNIST. Pada bab 3, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, PIL, Pandas, NumPy, dan pustaka lain untuk mengenali rambu lalu lintas menggunakan dataset GTSRB dari Kaggle. Ada beberapa jenis rambu lalu lintas seperti batas kecepatan, dilarang masuk, rambu lalu lintas, belok kiri atau kanan, anak-anak menyeberang, tidak ada kendaraan berat yang lewat, dll. Klasifikasi rambu lalu lintas adalah proses untuk mengidentifikasi kelas rambu lalu lintas tersebut. Pada proyek Python ini, Anda akan membangun model jaringan saraf tiruan (deep neural network) yang dapat mengklasifikasikan rambu lalu lintas dalam citra ke dalam kategori yang berbeda. Dengan model ini, Anda akan dapat membaca dan memahami rambu lalu lintas yang merupakan pekerjaan yang sangat penting bagi semua kendaraan otonom. Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan pustaka lainnya untuk melakukan pendeteksian tumor otak menggunakan dataset Brain Image MRI yang disediakan oleh Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan library lain untuk melakukan klasifikasi gender menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 6, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka lain untuk melakukan pengenalan ekspresi wajah menggunakan dataset FER2013 yang disediakan oleh Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 3: PANDUAN PRAKTIS DEEP LEARNING MENGGUNAKAN SCIKIT-LEARN, KERAS, DAN TENSORFLOW DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deteksi wajah, mata, dan mulut menggunakan Haar Cascades, klasifikasi/prediksi buah, klasifikasi/prediksi kucing/anjing, klasifikasi/prediksi mebel, klasifikasi/prediksi mode (fashion). Pada bab 1, Anda akan belajar bagaimana menggunakan pustaka OpenCV, PIL, NumPy dan pustaka lain untuk melakukan deteksi wajah, mata, dan mulut menggunakan Haar Cascades dengan Python GUI (PyQt). Pada bab 2, Anda akan mempelajari bagaimana memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka-pustaka lain untuk mengimplementasikan klasifikasi buah menggunakan dataset Fruits 360 yang disediakan oleh Kaggle (https://www.kaggle.com/moltean/fruits/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk klasifikasi kucing/anjing menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustakan lain untuk mendeteksi atau mengklasifikasi mebel menggunakan dataset Furniture Detector yang disediakan oleh Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah modul lain untuk melakukan klasifikasi terhadap citra-citra mode menggunakan dataset Fashion MNIST yang disediakan oleh Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Book Synopsis Data Science Dengan Python GUI Untuk Programmer by : Vivian Siahaan
Download or read book Data Science Dengan Python GUI Untuk Programmer written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-08-19 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buku 1: Pemrograman DATA SCIENCE dengan Python GUI: Studi Kasus Dataset Diabetes Dan Kanker Payudara Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Practical Data Science Programming for Medical Datasets Analysis and Prediction with Python GUI”. Anda dapat menemukannya di Google Books dan Amazon. Pada proyek pertama, Anda akan mempelajari cara menggunakan Scikit-Learn, SVM, NumPy, Pandas, dan library lainnya untuk melakukan cara memprediksi diabetes tahap awal menggunakan Early Stage Diabetes Risk Prediction Dataset yang disediakan di Kaggle. Dataset ini berisi data tanda dan gejala penderita diabetes atau pasien yang berpotensi mengidap diabetes. Dataset telah dikumpulkan dengan menggunakan kuesioner langsung dari pasien Rumah Sakit Sylhet Diabetes di Sylhet, Bangladesh dan disetujui oleh dokter. Dataset terdiri dari total 15 fitur dan satu variabel target bernama class. Pada proyek ini, Anda akan mengembangkan GUI menggunakan PyQt5 untuk menampilkan distribusi fitur, feature importance, skor validasi silang, dan nilai terprediksi versus nilai sebenarnya, dan confusion matrix. Pada proyek kedua, Anda akan belajar bagaimana menerapkan Scikit-Learn, NumPy, Pandas, dan sejumlah pustaka lain untuk menganalisa dan memprediksi kanker payudara menggunakan Breast Cancer Prediction Dataset yang disediakan di Kaggle. Di seluruh dunia, kanker payudara adalah jenis kanker yang paling umum pada wanita dan tertinggi kedua dalam hal angka kematian. Diagnosis kanker payudara dilakukan ketika ditemukan benjolan abnormal (dari pemeriksaan sendiri atau x-ray) atau setitik kecil dari kalsium yang terlihat (pada x-ray). Setelah benjolan yang mencurigakan ditemukan, dokter akan melakukan diagnosis untuk menentukan apakah itu kanker dan, jika ya, apakah sudah menyebar ke bagian tubuh lain. Dataset kanker payudara ini diperoleh dari University of Wisconsin Hospitals, Madison dari Dr. William H. Wolberg. Pada proyek ini, Anda juga akan mengembangkan GUI menggunakan PyQt5 untuk menampilkan decision boundary, ROC, distribusi fitur, feature importance, skor validasi silang, dan nilai terprediksi versus nilai sebenarnya, dan confusion matrix. Buku 2: IMPLEMENTASI DATA SCIENCE BERBASIS PROYEK DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Step by Step Project-Based Tutorials for Data Science with Python GUI: Traffic and Heart Attack Analysis and Prediction”. Anda dapat menemukannya di Google Books dan Amazon. Pada Bab 1, Anda akan mempelajari dasar-dasar pemrograman Python GUI dengan PyQ5. Anda akan belajar menciptakan sejumlah GUI dengan bantuan Qt Designer. Pada proyek di Bab 2, Anda akan belajar menggunakan dan menerapkan modul Scikit-Learn, NumPy, Pandas, dan sejumlah modul lain untuk menganalisa dan memprediksi serangan jantung menggunakan Heart Attack Analysis & Prediction Dataset yang disediakan di Kaggle. Di sini, Anda akan mengembangkan sebuah GUI untuk menampilkan distribusi tiap fitur pada dataset, matriks korelasi, confusion matrix, dan nilai-nilai sebenarnya versus nilai-nilai prediksi. Model-model machine learning yang dipakai pada proyek ini adalah Logistic Regression, K-Nearest Neighbor, Support Vector Machine, Decision Tree, Random Forest, Adaboost, Gradient Boosting, SGBoost, dan MLP. Pada proyek di Bab 3, Anda akan belajar dan menerapkan Scikit-Learn, Scipy, dan sejumlah pustaka lain untuk mengimplementasikan bagaimana menganalisa dan memprediksi trafik kendaraan pada empat persimpangan jalan menggunakan Traffic Prediction Dataset yang disediakan di Kaggle. Dataset memuat 48.1k (48120) observasi banyaknya kendaraan tiap jam di empat persimpangan jalan berbeda. Dataset ini memuat empat kolom: 1) DateTime; 2) Juction; 3) Vehicles; dan 4) ID. Pada proyek ini, Anda akan mengembangkan sebuah GUI untuk menampilkan distribusi kerapatan probabilitas tiap fitur, data pada tiap persimpangan dalam runtun waktu, distribusi banyak kendaraan berdasarkan waktu (tahun, bulan, dan hari) dan persimpangan, matriks korelasi, korelasi-diri parsial, hasil pelatihan model-model Random Forest, keutamaan fitur, dan banyak kendaraan berdasarkan hari untuk beberapa bulan ke depan. Buku 3: TUMOR OTAK: Analisis, Klasifikasi, dan Deteksi Menggunakan Machine Learning dan Deep Learning dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “BRAIN TUMOR: Analysis, Classification, and Detection Using Machine Learning and Deep Learning with Python GUI”. Anda dapat menemukannya di Google Books dan Amazon. Tentu, Anda telah banyak menjumpai buku-buku yang memberikan pemahaman fundamental dan teoritis yang berkaitan dengan Machine Learning dan Deep Learning. Berbeda dari buku-buku tersebut, buku ini diperuntukkan bagi Anda yang ingin mengupas data science, khususnya Machine Learning dan Deep Learning, dengan secara langsung mempraktekkannya dalam sebuah proyek. Hal ini akan meningkatkan kemampuan pemrograman Anda ketika Anda nantinya berniat untuk menjadi seorang Data Scientist. Pada proyek ini, Anda akan mempelajari cara menggunakan Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, dan pustaka lainnya untuk menerapkan analisis, klasifikasi dan deteksi tumor otak dengan pembelajaran mesin (Machine Learning) dan Deep Learning menggunakan dataset Brain Tumor yang disediakan di Kaggle. Dataset ini berisi lima fitur orde pertama: Mean (kontribusi intensitas piksel individu untuk seluruh gambar), Variance (digunakan untuk menemukan bagaimana setiap piksel bervariasi dari piksel tetangga 0, Standard Deviation (deviasi nilai terukur atau data dari mean), Skewness (ukuran simetri), dan Kurtosis (menggambarkan puncak, misalnya, distribusi frekuensi). Dataset ini juga berisi delapan fitur orde kedua: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, dan Coarseness. Model machine learning yang digunakan dalam proyek ini adalah K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, dan Support Vector Machine. Model deep learning yang digunakan dalam proyek ini adalah MobileNet dan ResNet50. Pada proyek ini, Anda akan mengembangkan GUI menggunakan PyQt5 untuk menampilkan decision boundary, ROC, distribusi fitur, feature importance, skor validasi silang, dan nilai terprediksi versus nilai sebenarnya, confusion matrix, rugi pelatihan, dan akurasi pelatihan.
Book Synopsis Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI by : Vivian Siahaan
Download or read book Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-19 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). To perform license plate detection, these steps are taken: 1. Dataset Preparation: Extract the dataset and organize it into separate folders for images and annotations. The annotations should contain bounding box coordinates for license plate regions.; 2. Data Preprocessing: Load the images and annotations from the dataset. Preprocess the images by resizing, normalizing, or applying any other necessary transformations. Convert the annotation bounding box coordinates to the appropriate format for training.; 3. Training Data Generation: Divide the dataset into training and validation sets. Generate training data by augmenting the images and annotations (e.g., flipping, rotating, zooming). Create data generators or data loaders to efficiently load the training data.; 4. Model Development: Choose a suitable deep learning model architecture for license plate detection, such as a convolutional neural network (CNN). Use TensorFlow and Keras to develop the model architecture. Compile the model with appropriate loss functions and optimization algorithms.; 5. Model Training: Train the model using the prepared training data. Monitor the training process by tracking metrics like loss and accuracy. Adjust the hyperparameters or model architecture as needed to improve performance.; 6. Model Evaluation: Evaluate the trained model using the validation set. Calculate relevant metrics like precision, recall, and F1 score. Make any necessary adjustments to the model based on the evaluation results.; 7. License Plate Detection: Use the trained model to detect license plates in new images. Apply any post-processing techniques to refine the detected regions. Extract the license plate regions and further process them if needed. In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset. Here are the steps to perform sign language recognition using the Sign Language Digits Dataset: 1. Download the dataset from Kaggle: You can visit the Kaggle Sign Language Digits Dataset page (https://www.kaggle.com/ardamavi/sign-language-digits-dataset) and download the dataset.; 2. Extract the dataset: After downloading the dataset, extract the contents from the downloaded zip file to a suitable location on your local machine.; 3.Load the dataset: The dataset consists of two parts - images and a CSV file containing the corresponding labels. The images are stored in a folder, and the CSV file contains the image paths and labels.; 4. Preprocess the dataset: Depending on the specific requirements of your model, you may need to preprocess the dataset. This can include tasks such as resizing images, converting labels to numerical format, normalizing pixel values, or splitting the dataset into training and testing sets.; 5. Build a machine learning model: Use libraries such as TensorFlow and Keras to build a sign language recognition model. This typically involves designing the architecture of the model, compiling it with suitable loss functions and optimizers, and training the model on the preprocessed dataset.; 6. Evaluate the model: After training the model, evaluate its performance using appropriate evaluation metrics. This can help you understand how well the model is performing on the sign language recognition task.; 7. Make predictions: Once the model is trained and evaluated, you can use it to make predictions on new sign language images. Pass the image through the model, and it will predict the corresponding sign language digit. In chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Here's a general outline of the process: Data Preparation: Start by downloading the dataset from the Kaggle link you provided. Extract the dataset and organize it into appropriate folders (e.g., training and testing folders).; Import Libraries: Begin by importing the necessary libraries, including TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, and NumPy.; Data Loading and Preprocessing: Load the images and labels from the dataset. Since the dataset may come in different formats, it's essential to understand its structure and adjust the code accordingly. Use OpenCV to read the images and Pandas to load the labels.; Data Augmentation: Perform data augmentation techniques such as rotation, flipping, and scaling to increase the diversity of the training data and prevent overfitting. You can use the ImageDataGenerator class from Keras for this purpose.; Model Building: Define your neural network architecture using the Keras API with TensorFlow backend. You can start with a simple architecture like a convolutional neural network (CNN). Experiment with different architectures to achieve better performance.; Model Compilation: Compile your model by specifying the loss function, optimizer, and evaluation metric. For a binary classification problem like crack detection, you can use binary cross-entropy as the loss function and Adam as the optimizer.; Model Training: Train your model on the prepared dataset using the fit() method. Split your data into training and validation sets using train_test_split() from Scikit-Learn. Monitor the training progress and adjust hyperparameters as needed. Model Evaluation: Evaluate the performance of your trained model on the test set. Use appropriate evaluation metrics such as accuracy, precision, recall, and F1 score. Scikit-Learn provides functions for calculating these metrics.; Model Prediction: Use the trained model to predict crack detection on new unseen images. Load the test images, preprocess them if necessary, and use the trained model to make predictions.
Book Synopsis Machine Learning mit Python und Keras, TensorFlow2 und Scikit-learn by : Sebastian Raschka
Download or read book Machine Learning mit Python und Keras, TensorFlow2 und Scikit-learn written by Sebastian Raschka and published by . This book was released on 2021-03-31 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: