Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Hyperbolic Problems Theory Numerics And Applications
Download Hyperbolic Problems Theory Numerics And Applications full books in PDF, epub, and Kindle. Read online Hyperbolic Problems Theory Numerics And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :Sylvie Benzoni-Gavage Publisher :Springer Science & Business Media ISBN 13 :3540757120 Total Pages :1117 pages Book Rating :4.5/5 (47 download)
Book Synopsis Hyperbolic Problems: Theory, Numerics, Applications by : Sylvie Benzoni-Gavage
Download or read book Hyperbolic Problems: Theory, Numerics, Applications written by Sylvie Benzoni-Gavage and published by Springer Science & Business Media. This book was released on 2008-01-12 with total page 1117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains papers that were presented at HYP2006, the eleventh international Conference on Hyperbolic Problems: Theory, Numerics and Applications. This biennial series of conferences has become one of the most important international events in Applied Mathematics. As computers became more and more powerful, the interplay between theory, modeling, and numerical algorithms gained considerable impact, and the scope of HYP conferences expanded accordingly.
Book Synopsis Hyperbolic Problems: Theory, Numerics, Applications by : Michael Fey
Download or read book Hyperbolic Problems: Theory, Numerics, Applications written by Michael Fey and published by Birkhäuser. This book was released on 2012-12-06 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: [Infotext]((Kurztext))These are the proceedings of the 7th International Conference on Hyperbolic Problems, held in Zürich in February 1998. The speakers and contributors have been rigorously selected and present the state of the art in this field. The articles, both theoretical and numerical, encompass a wide range of applications, such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics. ((Volltext))These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics.
Book Synopsis Hyperbolic Problems: Theory, Numerics, Applications by : Thomas Y. Hou
Download or read book Hyperbolic Problems: Theory, Numerics, Applications written by Thomas Y. Hou and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.
Book Synopsis Finite Volume Methods for Hyperbolic Problems by : Randall J. LeVeque
Download or read book Finite Volume Methods for Hyperbolic Problems written by Randall J. LeVeque and published by Cambridge University Press. This book was released on 2002-08-26 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Book Synopsis Theory, Numerics and Applications of Hyperbolic Problems II by : Christian Klingenberg
Download or read book Theory, Numerics and Applications of Hyperbolic Problems II written by Christian Klingenberg and published by Springer. This book was released on 2018-08-01 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Book Synopsis Hyperbolic Problems: Theory, Numerics, Applications. Volume I by : Carlos Parés
Download or read book Hyperbolic Problems: Theory, Numerics, Applications. Volume I written by Carlos Parés and published by Springer Nature. This book was released on with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Hyperbolic Problems: Theory, Numerics And Applications (In 2 Volumes) by : Tatsien Li
Download or read book Hyperbolic Problems: Theory, Numerics And Applications (In 2 Volumes) written by Tatsien Li and published by World Scientific. This book was released on 2012-09-28 with total page 793 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume book is devoted to mathematical theory, numerics and applications of hyperbolic problems. Hyperbolic problems have not only a long history but also extremely rich physical background. The development is highly stimulated by their applications to Physics, Biology, and Engineering Sciences; in particular, by the design of effective numerical algorithms. Due to recent rapid development of computers, more and more scientists use hyperbolic partial differential equations and related evolutionary equations as basic tools when proposing new mathematical models of various phenomena and related numerical algorithms.This book contains 80 original research and review papers which are written by leading researchers and promising young scientists, which cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ';Hyperbolic Partial Differential Equations';. It is aimed at mathematicians, researchers in applied sciences and graduate students.
Book Synopsis Hyperbolic Problems: Theory, Numerics, Applications by : Heinrich Freistühler
Download or read book Hyperbolic Problems: Theory, Numerics, Applications written by Heinrich Freistühler and published by Birkhäuser. This book was released on 2012-12-06 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. The mathematical theory of hyperbolic equations has recently made considerable progress. Accurate and efficient numerical schemes for computation have been and are being further developed. This two-volume set of conference proceedings contains about 100 refereed and carefully selected papers. The books are intended for researchers and graduate students in mathematics, science and engineering interested in the most recent results in theory and practice of hyperbolic problems. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended thermodynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability of shock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite element schemes, adaptive, multiresolution, and artificial dissipation methods.
Book Synopsis Hyperbolic Problems: Theory, Numerics, Applications. Volume II by : Carlos Parés
Download or read book Hyperbolic Problems: Theory, Numerics, Applications. Volume II written by Carlos Parés and published by Springer Nature. This book was released on with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Hyperbolic Problems: Theory, Numerics, Applications by : Rolf Jeltsch
Download or read book Hyperbolic Problems: Theory, Numerics, Applications written by Rolf Jeltsch and published by Birkhäuser. This book was released on 2012-12-06 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Hyperbolic Partial Differential Equations by : Andreas Meister
Download or read book Hyperbolic Partial Differential Equations written by Andreas Meister and published by Vieweg+Teubner Verlag. This book was released on 2011-12-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives an introduction to the fundamental properties of hyperbolic partial differential equations und their appearance in the mathematical modelling of various problems from practice. It shows in an unique manner concepts for the numerical treatment of such equations starting from basic algorithms up actual research topics in this area. The numerical methods discussed are central and upwind schemes for structured and unstructured grids based on ENO and WENO reconstructions, pressure correction schemes like SIMPLE and PISO as well as asymptotic-induced algorithms for low-Mach number flows.
Book Synopsis Hyperbolic Problems: Theory, Numerics, Applications - Proceedings Of The Fifth International Conference by : James Glimm
Download or read book Hyperbolic Problems: Theory, Numerics, Applications - Proceedings Of The Fifth International Conference written by James Glimm and published by World Scientific. This book was released on 1996-03-14 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intellectual center of this proceedings volume is the subject of conservation laws. Conservation laws are the most basic model of many continuum processes, and for this reason they govern the motion of fluids, solids, and plasma. They are basic to the understanding of more complex modeling issues, such as multiphase flow, chemically reacting flow, and non-equilibrium thermodynamics. Equations of this type also arise in novel and unexpected areas, such as the pattern recognition and image processing problem of edge enhancement and detection. The articles in this volume address the entire range of the study of conservation laws, including the fundamental mathematical theory, familiar and novel applications, and the numerical problem of finding effective computational algorithms for the solution of these problems.
Book Synopsis Numerical Methods for Conservation Laws by : LEVEQUE
Download or read book Numerical Methods for Conservation Laws written by LEVEQUE and published by Birkhäuser. This book was released on 2013-11-11 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Download or read book Hyperbolic Problems written by Daqian Li and published by . This book was released on 2012 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for mathematicians, researchers in applied sciences and graduate students, this book is devoted to mathematical theory, numerics and applications of hyperbolic problems. It covers a range of topics addressing theoretical, modeling and computational issues arising under the umbrella of "Hyperbolic Partial Differential Equations".
Author :Philippe G. LeFloch Publisher :Springer Science & Business Media ISBN 13 :9783764366872 Total Pages :1010 pages Book Rating :4.3/5 (668 download)
Book Synopsis Hyperbolic Systems of Conservation Laws by : Philippe G. LeFloch
Download or read book Hyperbolic Systems of Conservation Laws written by Philippe G. LeFloch and published by Springer Science & Business Media. This book was released on 2002-07-01 with total page 1010 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.
Book Synopsis Numerical Methods for Conservation Laws by : Jan S. Hesthaven
Download or read book Numerical Methods for Conservation Laws written by Jan S. Hesthaven and published by SIAM. This book was released on 2018-01-30 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.
Book Synopsis Hyperbolic Problems: Theory, Numerics, Applications by : Michael Fey
Download or read book Hyperbolic Problems: Theory, Numerics, Applications written by Michael Fey and published by Springer Science & Business Media. This book was released on 1999-04-01 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: [Infotext]((Kurztext))These are the proceedings of the 7th International Conference on Hyperbolic Problems, held in Zürich in February 1998. The speakers and contributors have been rigorously selected and present the state of the art in this field. The articles, both theoretical and numerical, encompass a wide range of applications, such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics. ((Volltext))These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics.