Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Homotopy Theoretic Methods In Group Cohomology
Download Homotopy Theoretic Methods In Group Cohomology full books in PDF, epub, and Kindle. Read online Homotopy Theoretic Methods In Group Cohomology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Homotopy Theoretic Methods in Group Cohomology by : William G. Dwyer
Download or read book Homotopy Theoretic Methods in Group Cohomology written by William G. Dwyer and published by Birkhäuser. This book was released on 2012-12-06 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists essentially of notes which were written for an Advanced Course on Classifying Spaces and Cohomology of Groups. The course took place at the Centre de Recerca Mathematica (CRM) in Bellaterra from May 27 to June 2, 1998 and was part of an emphasis semester on Algebraic Topology. It consisted of two parallel series of 6 lectures of 90 minutes each and was intended as an introduction to new homotopy theoretic methods in group cohomology. The first part of the book is concerned with methods of decomposing the classifying space of a finite group into pieces made of classifying spaces of appropriate subgroups. Such decompositions have been used with great success in the last 10-15 years in the homotopy theory of classifying spaces of compact Lie groups and p-compact groups in the sense of Dwyer and Wilkerson. For simplicity the emphasis here is on finite groups and on homological properties of various decompositions known as centralizer resp. normalizer resp. subgroup decomposition. A unified treatment of the various decompositions is given and the relations between them are explored. This is preceeded by a detailed discussion of basic notions such as classifying spaces, simplicial complexes and homotopy colimits.
Book Synopsis Homotopy Theoretic Methods in Group Cohomology by : William Dwyer
Download or read book Homotopy Theoretic Methods in Group Cohomology written by William Dwyer and published by Springer Science & Business Media. This book was released on 2001-10-01 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists essentially of notes which were written for an Advanced Course on Classifying Spaces and Cohomology of Groups. The course took place at the Centre de Recerca Mathematica (CRM) in Bellaterra from May 27 to June 2, 1998 and was part of an emphasis semester on Algebraic Topology. It consisted of two parallel series of 6 lectures of 90 minutes each and was intended as an introduction to new homotopy theoretic methods in group cohomology. The first part of the book is concerned with methods of decomposing the classifying space of a finite group into pieces made of classifying spaces of appropriate subgroups. Such decompositions have been used with great success in the last 10-15 years in the homotopy theory of classifying spaces of compact Lie groups and p-compact groups in the sense of Dwyer and Wilkerson. For simplicity the emphasis here is on finite groups and on homological properties of various decompositions known as centralizer resp. normalizer resp. subgroup decomposition. A unified treatment of the various decompositions is given and the relations between them are explored. This is preceeded by a detailed discussion of basic notions such as classifying spaces, simplicial complexes and homotopy colimits.
Book Synopsis Cohomology Operations and Applications in Homotopy Theory by : Robert E. Mosher
Download or read book Cohomology Operations and Applications in Homotopy Theory written by Robert E. Mosher and published by Courier Corporation. This book was released on 2008-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.
Book Synopsis Cohomology of Finite Groups by : Alejandro Adem
Download or read book Cohomology of Finite Groups written by Alejandro Adem and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The cohomology of groups has, since its beginnings in the 1920s and 1930s, been the stage for significant interaction between algebra and topology and has led to the creation of important new fields in mathematics, like homological algebra and algebraic K-theory. This is the first book to deal comprehensively with the cohomology of finite groups: it introduces the most important and useful algebraic and topological techniques, and describes the interplay of the subject with those of homotopy theory, representation theory and group actions. The combination of theory and examples, together with the techniques for computing the cohomology of important classes of groups including symmetric groups, alternating groups, finite groups of Lie type, and some of the sporadic simple groups, enable readers to acquire an in-depth understanding of group cohomology and its extensive applications.
Book Synopsis Topological Methods in Group Theory by : Ross Geoghegan
Download or read book Topological Methods in Group Theory written by Ross Geoghegan and published by Springer Science & Business Media. This book was released on 2007-12-17 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.
Book Synopsis Complex Cobordism and Stable Homotopy Groups of Spheres by : Douglas C. Ravenel
Download or read book Complex Cobordism and Stable Homotopy Groups of Spheres written by Douglas C. Ravenel and published by American Mathematical Soc.. This book was released on 2003-11-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Book Synopsis Group Representation Theory by : Meinolf Geck
Download or read book Group Representation Theory written by Meinolf Geck and published by EPFL Press. This book was released on 2007-05-07 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: After the pioneering work of Brauer in the middle of the 20th century in the area of the representation theory of groups, many entirely new developments have taken place and the field has grown into a very large field of study. This progress, and the remaining open problems (e.g., the conjectures of Alterin, Dade, Broué, James, etc.) have ensured that group representation theory remains a lively area of research. In this book, the leading researchers in the field contribute a chapter in their field of specialty, namely: Broué (Finite reductive groups and spetses); Carlson (Cohomology and representations of finite groups); Geck (Representations of Hecke algebras); Seitz (Topics in algebraic groups); Kessar and Linckelmann (Fusion systems and blocks); Serre (On finite subgroups of Lie groups); Thévenaz (The classification of endo-permutaion modules); and Webb (Representations and cohomology of categories).
Book Synopsis Lectures on Algebraic Quantum Groups by : Ken Brown
Download or read book Lectures on Algebraic Quantum Groups written by Ken Brown and published by Birkhäuser. This book was released on 2012-12-06 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.
Book Synopsis Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory by : Paul Gregory Goerss
Download or read book Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory written by Paul Gregory Goerss and published by American Mathematical Soc.. This book was released on 2004 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of its series of Emphasis Years in Mathematics, Northwestern University hosted an International Conference on Algebraic Topology. The purpose of the conference was to develop new connections between homotopy theory and other areas of mathematics. This proceedings volume grew out of that event. Topics discussed include algebraic geometry, cohomology of groups, algebraic $K$-theory, and $\mathbb{A 1$ homotopy theory. Among the contributors to the volume were Alejandro Adem,Ralph L. Cohen, Jean-Louis Loday, and many others. The book is suitable for graduate students and research mathematicians interested in homotopy theory and its relationship to other areas of mathematics.
Book Synopsis Torsions of 3-dimensional Manifolds by : Vladimir Turaev
Download or read book Torsions of 3-dimensional Manifolds written by Vladimir Turaev and published by Birkhäuser. This book was released on 2012-12-06 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This is an excellent exposition about abelian Reidemeister torsions for three-manifolds." —Zentralblatt Math "This monograph contains a wealth of information many topologists will find very handy. ...Many of the new points of view pioneered by Turaev are gradually becoming mainstream and are spreading beyond the pure topology world. This monograph is a timely and very useful addition to the scientific literature." —Mathematical Reviews
Book Synopsis Ten Lectures on Random Media by : Erwin Bolthausen
Download or read book Ten Lectures on Random Media written by Erwin Bolthausen and published by Birkhäuser. This book was released on 2012-12-06 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my accomplice during the DMV-Seminar. A Brief Introduction The main theme of this series of lectures are "Random motions in random me dia". The subject gathers a variety of probabilistic models often originated from physical sciences such as solid state physics, physical chemistry, oceanography, biophysics . . . , in which typically some diffusion mechanism takes place in an inho mogeneous medium. Randomness appears at two levels. It comes in the description of the motion of the particle diffusing in the medium, this is a rather traditional point of view for probability theory; but it also comes in the very description of the medium in which the diffusion takes place.
Book Synopsis Introduction to the Baum-Connes Conjecture by : Alain Valette
Download or read book Introduction to the Baum-Connes Conjecture written by Alain Valette and published by Birkhäuser. This book was released on 2012-12-06 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Baum-Connes conjecture is part of A. Connes' non-commutative geometry programme. It can be viewed as a conjectural generalisation of the Atiyah-Singer index theorem, to the equivariant setting (the ambient manifold is not compact, but some compactness is restored by means of a proper, co-compact action of a group "gamma"). Like the Atiyah-Singer theorem, the Baum-Connes conjecture states that a purely topological object coincides with a purely analytical one. For a given group "gamma", the topological object is the equivariant K-homology of the classifying space for proper actions of "gamma", while the analytical object is the K-theory of the C*-algebra associated with "gamma" in its regular representation. The Baum-Connes conjecture implies several other classical conjectures, ranging from differential topology to pure algebra. It has also strong connections with geometric group theory, as the proof of the conjecture for a given group "gamma" usually depends heavily on geometric properties of "gamma". This book is intended for graduate students and researchers in geometry (commutative or not), group theory, algebraic topology, harmonic analysis, and operator algebras. It presents, for the first time in book form, an introduction to the Baum-Connes conjecture. It starts by defining carefully the objects in both sides of the conjecture, then the assembly map which connects them. Thereafter it illustrates the main tool to attack the conjecture (Kasparov's theory), and it concludes with a rough sketch of V. Lafforgue's proof of the conjecture for co-compact lattices in in Spn1, SL(3R), and SL(3C).
Book Synopsis Rational Homotopy Theory by : Yves Felix
Download or read book Rational Homotopy Theory written by Yves Felix and published by Springer Science & Business Media. This book was released on 2001 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a long awaited book on rational homotopy theory which contains all the main theorems with complete proofs, and more elementary proofs for many results that were proved ten or fifteen years ago. The authors added a frist section on classical algebraic topology to make the book accessible to students with only little background in algebraic topology.
Book Synopsis Classifying Spaces of Sporadic Groups by : David J. Benson
Download or read book Classifying Spaces of Sporadic Groups written by David J. Benson and published by American Mathematical Soc.. This book was released on 2008 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: For each of the 26 sporadic finite simple groups, the authors construct a 2-completed classifying space using a homotopy decomposition in terms of classifying spaces of suitable 2-local subgroups. This construction leads to an additive decomposition of the mod 2 group cohomology.
Book Synopsis Cohomology Rings of Finite Groups by : Jon F. Carlson
Download or read book Cohomology Rings of Finite Groups written by Jon F. Carlson and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group cohomology has a rich history that goes back a century or more. Its origins are rooted in investigations of group theory and num ber theory, and it grew into an integral component of algebraic topology. In the last thirty years, group cohomology has developed a powerful con nection with finite group representations. Unlike the early applications which were primarily concerned with cohomology in low degrees, the in teractions with representation theory involve cohomology rings and the geometry of spectra over these rings. It is this connection to represen tation theory that we take as our primary motivation for this book. The book consists of two separate pieces. Chronologically, the first part was the computer calculations of the mod-2 cohomology rings of the groups whose orders divide 64. The ideas and the programs for the calculations were developed over the last 10 years. Several new features were added over the course of that time. We had originally planned to include only a brief introduction to the calculations. However, we were persuaded to produce a more substantial text that would include in greater detail the concepts that are the subject of the calculations and are the source of some of the motivating conjectures for the com putations. We have gathered together many of the results and ideas that are the focus of the calculations from throughout the mathematical literature.
Book Synopsis Cohomological Methods in Transformation Groups by : C. Allday
Download or read book Cohomological Methods in Transformation Groups written by C. Allday and published by Cambridge University Press. This book was released on 1993-07 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an account of the theory of certain types of compact transformation groups, namely those that are susceptible to study using ordinary cohomology theory and rational homotopy theory, which in practice means the torus groups and elementary abelian p-groups. The efforts of many mathematicians have combined to bring a depth of understanding to this area. However to make it reasonably accessible to a wide audience, the authors have streamlined the presentation, referring the reader to the literature for purely technical results and working in a simplified setting where possible. In this way the reader with a relatively modest background in algebraic topology and homology theory can penetrate rather deeply into the subject, whilst the book at the same time makes a useful reference for the more specialised reader.
Book Synopsis Subgroup Complexes by : Stephen D. Smith
Download or read book Subgroup Complexes written by Stephen D. Smith and published by American Mathematical Soc.. This book was released on 2011-11-10 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an overview of a research area that combines geometries for groups (such as Tits buildings and generalizations), topological aspects of simplicial complexes from $p$-subgroups of a group (in the spirit of Brown, Quillen, and Webb), and combinatorics of partially ordered sets. The material is intended to serve as an advanced graduate-level text and partly as a general reference on the research area. The treatment offers optional tracks for the reader interested in buildings, geometries for sporadic simple groups, and $G$-equivariant equivalences and homology for subgroup complexes.