An Introduction to Hilbert Space

Download An Introduction to Hilbert Space PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107717167
Total Pages : 254 pages
Book Rating : 4.1/5 (77 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Hilbert Space by : N. Young

Download or read book An Introduction to Hilbert Space written by N. Young and published by Cambridge University Press. This book was released on 1988-07-21 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.

A Hilbert Space Problem Book

Download A Hilbert Space Problem Book PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468493302
Total Pages : 385 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis A Hilbert Space Problem Book by : P.R. Halmos

Download or read book A Hilbert Space Problem Book written by P.R. Halmos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem.... This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."

Introduction to Hilbert Space

Download Introduction to Hilbert Space PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821819127
Total Pages : 226 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Hilbert Space by : Sterling K. Berberian

Download or read book Introduction to Hilbert Space written by Sterling K. Berberian and published by American Mathematical Soc.. This book was released on 1999 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Preface: ``This textbook has evolved from a set of lecture notes ... In both the course and the book, I have in mind first- or second-year graduate students in Mathematics and related fields such as Physics ... It is necessary for the reader to have a foundation in advanced calculus which includes familiarity with: least upper bound (LUB) and greatest lower bound (GLB), the concept of function, $\epsilon$'s and their companion $\delta$'s, and basic properties of sequences of real and complex numbers (convergence, Cauchy's criterion, the Weierstrass-Bolzano theorem). It is not presupposed that the reader is acquainted with vector spaces ... , matrices ... , or determinants ... There are over four hundred exercises, most of them easy ... It is my hope that this book, aside from being an exposition of certain basic material on Hilbert space, may also serve as an introduction to other areas of functional analysis.''

An Introduction to Hilbert Space and Quantum Logic

Download An Introduction to Hilbert Space and Quantum Logic PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461388414
Total Pages : 159 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Hilbert Space and Quantum Logic by : David W. Cohen

Download or read book An Introduction to Hilbert Space and Quantum Logic written by David W. Cohen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, nonclassical physics developed in three stages. First came a collection of ad hoc assumptions and then a cookbook of equations known as "quantum mechanics". The equations and their philosophical underpinnings were then collected into a model based on the mathematics of Hilbert space. From the Hilbert space model came the abstaction of "quantum logics". This book explores all three stages, but not in historical order. Instead, in an effort to illustrate how physics and abstract mathematics influence each other we hop back and forth between a purely mathematical development of Hilbert space, and a physically motivated definition of a logic, partially linking the two throughout, and then bringing them together at the deepest level in the last two chapters. This book should be accessible to undergraduate and beginning graduate students in both mathematics and physics. The only strict prerequisites are calculus and linear algebra, but the level of mathematical sophistication assumes at least one or two intermediate courses, for example in mathematical analysis or advanced calculus. No background in physics is assumed.

Introduction to Spectral Theory in Hilbert Space

Download Introduction to Spectral Theory in Hilbert Space PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483164179
Total Pages : 362 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Spectral Theory in Hilbert Space by : Gilbert Helmberg

Download or read book Introduction to Spectral Theory in Hilbert Space written by Gilbert Helmberg and published by Elsevier. This book was released on 2014-11-28 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.

Hilbert Space Methods in Probability and Statistical Inference

Download Hilbert Space Methods in Probability and Statistical Inference PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118165535
Total Pages : 268 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Hilbert Space Methods in Probability and Statistical Inference by : Christopher G. Small

Download or read book Hilbert Space Methods in Probability and Statistical Inference written by Christopher G. Small and published by John Wiley & Sons. This book was released on 2011-09-15 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains how Hilbert space techniques cross the boundaries into the foundations of probability and statistics. Focuses on the theory of martingales stochastic integration, interpolation and density estimation. Includes a copious amount of problems and examples.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Download Convex Analysis and Monotone Operator Theory in Hilbert Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319483110
Total Pages : 624 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Monotone Operator Theory in Hilbert Spaces by : Heinz H. Bauschke

Download or read book Convex Analysis and Monotone Operator Theory in Hilbert Spaces written by Heinz H. Bauschke and published by Springer. This book was released on 2017-02-28 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.

A Primer on Hilbert Space Theory

Download A Primer on Hilbert Space Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319037137
Total Pages : 267 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis A Primer on Hilbert Space Theory by : Carlo Alabiso

Download or read book A Primer on Hilbert Space Theory written by Carlo Alabiso and published by Springer. This book was released on 2014-10-08 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all subjects has been enriched. Moreover, a brief introduction to topological groups has been added in addition to exercises and solved problems throughout the text. With these improvements, the book can be used in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.

Means of Hilbert Space Operators

Download Means of Hilbert Space Operators PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540451528
Total Pages : 151 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Means of Hilbert Space Operators by : Fumio Hiai

Download or read book Means of Hilbert Space Operators written by Fumio Hiai and published by Springer. This book was released on 2003-12-09 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph is devoted to a systematic study of means of Hilbert space operators by a unified method based on the theory of double integral transformations and Peller's characterization of Schur multipliers. General properties on means of operators such as comparison results, norm estimates and convergence criteria are established. After some general theory, special investigations are focused on three one-parameter families of A-L-G (arithmetic-logarithmic-geometric) interpolation means, Heinz-type means and binomial means. In particular, norm continuity in the parameter is examined for such means. Some necessary technical results are collected as appendices.

Elements of Hilbert Spaces and Operator Theory

Download Elements of Hilbert Spaces and Operator Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811030200
Total Pages : 528 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Elements of Hilbert Spaces and Operator Theory by : Harkrishan Lal Vasudeva

Download or read book Elements of Hilbert Spaces and Operator Theory written by Harkrishan Lal Vasudeva and published by Springer. This book was released on 2017-03-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.

Applied Analysis by the Hilbert Space Method

Download Applied Analysis by the Hilbert Space Method PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486139298
Total Pages : 578 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Applied Analysis by the Hilbert Space Method by : Samuel S. Holland

Download or read book Applied Analysis by the Hilbert Space Method written by Samuel S. Holland and published by Courier Corporation. This book was released on 2012-05-04 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerous worked examples and exercises highlight this unified treatment. Simple explanations of difficult subjects make it accessible to undergraduates as well as an ideal self-study guide. 1990 edition.

Unbounded Self-adjoint Operators on Hilbert Space

Download Unbounded Self-adjoint Operators on Hilbert Space PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400747535
Total Pages : 435 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Unbounded Self-adjoint Operators on Hilbert Space by : Konrad Schmüdgen

Download or read book Unbounded Self-adjoint Operators on Hilbert Space written by Konrad Schmüdgen and published by Springer Science & Business Media. This book was released on 2012-07-09 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a graduate text on unbounded self-adjoint operators on Hilbert space and their spectral theory with the emphasis on applications in mathematical physics (especially, Schrödinger operators) and analysis (Dirichlet and Neumann Laplacians, Sturm-Liouville operators, Hamburger moment problem) . Among others, a number of advanced special topics are treated on a text book level accompanied by numerous illustrating examples and exercises. The main themes of the book are the following: - Spectral integrals and spectral decompositions of self-adjoint and normal operators - Perturbations of self-adjointness and of spectra of self-adjoint operators - Forms and operators - Self-adjoint extension theory :boundary triplets, Krein-Birman-Vishik theory of positive self-adjoint extension

Linear Transformations in Hilbert Space and Their Applications to Analysis

Download Linear Transformations in Hilbert Space and Their Applications to Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821810154
Total Pages : 632 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Linear Transformations in Hilbert Space and Their Applications to Analysis by : Marshall Harvey Stone

Download or read book Linear Transformations in Hilbert Space and Their Applications to Analysis written by Marshall Harvey Stone and published by American Mathematical Soc.. This book was released on 1932-12-31 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Topology

Download Introduction to Topology PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811369542
Total Pages : 458 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Topology by : Tej Bahadur Singh

Download or read book Introduction to Topology written by Tej Bahadur Singh and published by Springer. This book was released on 2019-05-17 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topology is a large subject with several branches, broadly categorized as algebraic topology, point-set topology, and geometric topology. Point-set topology is the main language for a broad range of mathematical disciplines, while algebraic topology offers as a powerful tool for studying problems in geometry and numerous other areas of mathematics. This book presents the basic concepts of topology, including virtually all of the traditional topics in point-set topology, as well as elementary topics in algebraic topology such as fundamental groups and covering spaces. It also discusses topological groups and transformation groups. When combined with a working knowledge of analysis and algebra, this book offers a valuable resource for advanced undergraduate and beginning graduate students of mathematics specializing in algebraic topology and harmonic analysis.

Harmonic Analysis of Operators on Hilbert Space

Download Harmonic Analysis of Operators on Hilbert Space PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441960937
Total Pages : 481 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Harmonic Analysis of Operators on Hilbert Space by : Béla Sz Nagy

Download or read book Harmonic Analysis of Operators on Hilbert Space written by Béla Sz Nagy and published by Springer Science & Business Media. This book was released on 2010-09-01 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: The existence of unitary dilations makes it possible to study arbitrary contractions on a Hilbert space using the tools of harmonic analysis. The first edition of this book was an account of the progress done in this direction in 1950-70. Since then, this work has influenced many other areas of mathematics, most notably interpolation theory and control theory. This second edition, in addition to revising and amending the original text, focuses on further developments of the theory, including the study of two operator classes: operators whose powers do not converge strongly to zero, and operators whose functional calculus (as introduced in Chapter III) is not injective. For both of these classes, a wealth of material on structure, classification and invariant subspaces is included in Chapters IX and X. Several chapters conclude with a sketch of other developments related with (and developing) the material of the first edition.

Introduction to Hilbert Space and the Theory of Spectral Multiplicity

Download Introduction to Hilbert Space and the Theory of Spectral Multiplicity PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 048682683X
Total Pages : 129 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Hilbert Space and the Theory of Spectral Multiplicity by : Paul R. Halmos

Download or read book Introduction to Hilbert Space and the Theory of Spectral Multiplicity written by Paul R. Halmos and published by Courier Dover Publications. This book was released on 2017-11-15 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise introductory treatment consists of three chapters: The Geometry of Hilbert Space, The Algebra of Operators, and The Analysis of Spectral Measures. A background in measure theory is the sole prerequisite. 1957 edition.

Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics

Download Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401153329
Total Pages : 247 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics by : W.-H. Steeb

Download or read book Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics written by W.-H. Steeb and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to modern quantum mechanics, emphasising the underlying Hilbert space theory and generalised function theory. All the major modern techniques and approaches used in quantum mechanics are introduced, such as Berry phase, coherent and squeezed states, quantum computing, solitons and quantum mechanics. Audience: The book is suitable for graduate students in physics and mathematics.