Habitat Resource Selection by Greater Sage Grouse Within Oil and Gas Development Areas in North Dakota and Montana

Download Habitat Resource Selection by Greater Sage Grouse Within Oil and Gas Development Areas in North Dakota and Montana PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 94 pages
Book Rating : 4.:/5 (763 download)

DOWNLOAD NOW!


Book Synopsis Habitat Resource Selection by Greater Sage Grouse Within Oil and Gas Development Areas in North Dakota and Montana by : Kristin A. Fritz

Download or read book Habitat Resource Selection by Greater Sage Grouse Within Oil and Gas Development Areas in North Dakota and Montana written by Kristin A. Fritz and published by . This book was released on 2011 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Seasonal Habitat Selection and Breeding Ecology of Greater-sage-grouse in Carbon County, Montana

Download Seasonal Habitat Selection and Breeding Ecology of Greater-sage-grouse in Carbon County, Montana PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 139 pages
Book Rating : 4.4/5 (387 download)

DOWNLOAD NOW!


Book Synopsis Seasonal Habitat Selection and Breeding Ecology of Greater-sage-grouse in Carbon County, Montana by : Erin Leslie Gelling

Download or read book Seasonal Habitat Selection and Breeding Ecology of Greater-sage-grouse in Carbon County, Montana written by Erin Leslie Gelling and published by . This book was released on 2022 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater sage-grouse (Centrocercus urophasianus; hereafter ‘sage-grouse’) are the focus of much research and conservation efforts owing to their obligate relationship with sagebrush (Artemisia spp.) and dramatic population declines over the last 50 years. Sage-grouse are a partially migratory species with three main seasonal habitats during breeding, summer, and winter. Anthropogenic disturbances can impact habitat and areas used by sage-grouse during all three seasons. Sage-grouse also exhibit low productivity that is limited, in part, by nest and chick survival. As uniparental incubators, nesting can be energetically costly for female sage-grouse because they have limited mobility when their precocial chicks are young. In addition, habitat characteristics have been shown to differ between brood-rearing female sage-grouse and broodless females (i.e., females without broods). Therefore, to sustain sage-grouse populations, focus should be on increasing vital rates for adult females, chicks, and nests—the life stages that most influence population growth. Research is thus critical to better understand the relationships between life stages of sage-grouse and their seasonal habitats, particularly during breeding and summer brood-rearing. The focus of my thesis was to assess the influence of natural and anthropogenic features on sage-grouse seasonal habitat selection, assess factors influencing sage-grouse nest survival and attentiveness, and assess habitat selection and behavior between brood-rearing and broodless female sage-grouse. By focusing on habitat selection across three seasons, during reproductive and non-reproductive states, and across second, third, and fourth-order habitat selection, wildlife managers will have better information to manage sage-grouse habitat to sustain or increase survival for adult females, broods, and nests. More specifically, this information will inform areas to prioritize management, restoration, and conservation to benefit sage-grouse populations and add to the body of knowledge of basic sage-grouse breeding ecology. In Chapter 1, I examined natural and anthropogenic landscape features that influence sage-grouse habitat selection during breeding, summer, and winter seasons. I used data from 85 GPS-tagged female sage-grouse in Carbon County, Montana and Park County, Wyoming spanning April 2018–April 2020. I found natural and anthropogenic features combined best explained sage-grouse habitat selection for all three seasons. Sage-grouse habitat selection differed between each season with sagebrush cover being important for breeding and agricultural fields being important in summer. In general, sage-grouse selected for sagebrush or shrub characteristics and lower slopes and avoided major roads, residential development, and oil and gas. However, anthropogenic disturbances were not always avoided and sometimes sage-grouse selected areas closer to these disturbances, such as agricultural fields during summer or roads during winter. I created predictive maps from resource selection function modeling to depict relative probability of use for each seasonal range to be used in wildlife management and conservation planning. In Chapter 2, I focused on nest survival and attentiveness. Nest success is an important part of the breeding process that has implications for population growth. I described sage-grouse incubation behavior, examined whether sage-grouse incubation behavior influenced nest survival, and evaluated factors that influenced sage-grouse incubation behavior. For this chapter, I used data collected from my study area in Carbon County, Montana and Park County, Wyoming and a separate study area in the Red Desert of Carbon and Sweetwater counties, Wyoming. I used 131 nests to describe sage-grouse incubation behavior and 118 nests to examine nest survival and average recess duration. I found nest survival was higher in Bridger compared to Red Desert. I found incubation constancy was higher and recesses shorter for adults compared to yearlings. I found nest survival was higher with increased minimum temperature and reduced with longer recesses. Recess duration was shorter with greater sagebrush cover within 30 m and recesses were longer with higher minimum temperature and day of incubation. Factors influencing nest survival and incubation patterns will be important for directing management to improve sage-grouse nest success and to clarify to researchers and managers our understanding of the basics of sage-grouse nesting biology. In Chapter 3, I focused on habitat selection, activity patterns, and ranges of both brood-rearing and broodless females during the breeding season. I examined behavior and reproductive state influence on microhabitat selection, daily and seasonal range sizes, and daily activity levels for brood-rearing and broodless females. I sampled microhabitat for 36 females, estimated ranges for 38 females, and measured activity for 43 females. I found females with broods 0–2 weeks selected microhabitat characteristics when night roosting and females with broods 3–5 weeks selected microhabitat characteristics when foraging and night roosting. However, broodless females showed no selection for microhabitat based on behavior. I also found differences in activity levels for both brood-rearing and broodless females throughout the day. Broods 0–2 weeks had the smallest ranges while broods 3–5 weeks and broodless females had larger daily and seasonal ranges. Differences in habitat selection, range size, and behavior warrants management to conserve areas used by both brood-rearing and broodless female sage-grouse in a population, whereas most past efforts focused primarily on habitat used by brood-rearing females. The Wildlife Society Bulletin has accepted this chapter for publication with Drs. Jeffrey Beck and Aaron Pratt as coauthors.

Greater Sage-Grouse

Download Greater Sage-Grouse PDF Online Free

Author :
Publisher : Univ of California Press
ISBN 13 : 0520948688
Total Pages : 665 pages
Book Rating : 4.5/5 (29 download)

DOWNLOAD NOW!


Book Synopsis Greater Sage-Grouse by : Steve Knick

Download or read book Greater Sage-Grouse written by Steve Knick and published by Univ of California Press. This book was released on 2011-05-19 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: Admired for its elaborate breeding displays and treasured as a game bird, the Greater Sage-Grouse is a charismatic symbol of the broad open spaces in western North America. Unfortunately these birds have declined across much of their range—which stretches across 11 western states and reaches into Canada—mostly due to loss of critical sagebrush habitat. Today the Greater Sage-Grouse is at the center of a complex conservation challenge. This multifaceted volume, an important foundation for developing conservation strategies and actions, provides a comprehensive synthesis of scientific information on the biology and ecology of the Greater Sage-Grouse. Bringing together the experience of thirty-eight researchers, it describes the bird’s population trends, its sagebrush habitat, and potential limitations to conservation, including the effects of rangeland fire, climate change, invasive plants, disease, and land uses such as energy development, grazing, and agriculture.

Ecology, Conservation, and Management of Grouse

Download Ecology, Conservation, and Management of Grouse PDF Online Free

Author :
Publisher : Univ of California Press
ISBN 13 : 0520270061
Total Pages : 376 pages
Book Rating : 4.5/5 (22 download)

DOWNLOAD NOW!


Book Synopsis Ecology, Conservation, and Management of Grouse by : Brett K. Sandercock

Download or read book Ecology, Conservation, and Management of Grouse written by Brett K. Sandercock and published by Univ of California Press. This book was released on 2011-09-04 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Summarizing current knowledge of grouse biology, this volume is organized in four sections--spatial ecology, habitat relationships, population biology, and conservation and management--and offers insights into spatial requirements, movements, and demography of grouse. Much of the research employs emerging tools in ecology that span biogeochemistry, molecular genetics, endocrinology, radio-telemetry, and remote sensing".--Adapted from publisher descrip tion on back cover

Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

Download Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming by :

Download or read book Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for forming any conclusions regarding potential impacts of wind energy development on sage-grouse. Although the data collected during the initial phases of this study indicate that greater sage-grouse may continue to use habitats near wind-energy facilities, research conducted on greater sage-grouse response to oil and gas development has found population declines may not occur until 2-10 years after development. Therefore, long-term data from several geographic areas within the range of the sage-grouse will likely be required to adequately assess impacts of wind-energy development on greater sage-grouse.

Partial Migration, Habitat Selection, and the Conservation of Greater Sage-grouse in the Bighorn Basin of Montana and Wyoming

Download Partial Migration, Habitat Selection, and the Conservation of Greater Sage-grouse in the Bighorn Basin of Montana and Wyoming PDF Online Free

Author :
Publisher :
ISBN 13 : 9780355856637
Total Pages : 175 pages
Book Rating : 4.8/5 (566 download)

DOWNLOAD NOW!


Book Synopsis Partial Migration, Habitat Selection, and the Conservation of Greater Sage-grouse in the Bighorn Basin of Montana and Wyoming by : Aaron C. Pratt

Download or read book Partial Migration, Habitat Selection, and the Conservation of Greater Sage-grouse in the Bighorn Basin of Montana and Wyoming written by Aaron C. Pratt and published by . This book was released on 2017 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The greater sage-grouse (Centrocercus urophasianus) has undergone range contractions and population declines largely due to habitat loss, fragmentation, and degradation. These declines have resulted in unprecedented conservation actions designed to reduce these threats. We investigated partial migration and maladaptive habitat selection, two phenomena that could complicate sage-grouse habitat conservation and hinder the effectiveness of these actions. Our first objective was to investigate what influenced sage-grouse when deciding to migrate between seasonal ranges and if there was variation in environmental conditions that explained why only some individuals migrated. Sage-grouse interpreted direct indicators of resource quality, especially temperature, when timing movements between seasonal ranges. For summer and fall transitions migratory grouse experienced more migration cues and were likely avoiding more rapid plant desiccation in warmer breeding ranges and avoiding higher snow accumulation in colder summer ranges with more precipitation. Conservationists must prioritize seasonal habitats when delineating reserves designed to protect partially-migratory species. Our second objective was to evaluate whether a more migratory sage-grouse population required a different habitat conservation strategy relative to seasonal requirements than a less migratory population. For both populations, prioritization of breeding habitat was justified because breeding habitat was most like other seasonal requirements and it had the greatest estimated contribution to population change. However, information specific to each population was necessary to identify the importance of prioritizing additional seasonal habitat with a greater need to include summer and winter habitat for the more migratory population. Sage-grouse conservation could be hindered by maladaptive habitat selection, where individuals select habitat where their fitness is lower or avoid habitat where they would perform better. Our third objective was to evaluate whether sage-grouse selected habitat relative to habitat quality (survival), and identify any characteristics where they were not matching selection with apparent survival and reproductive costs or benefits. We only measured a positive relationship between habitat selection and survival during winter and we found evidence for a negative selection relationship relative to several habitat characteristics. Our research has identified areas that warrant further investigation relative to potential mechanisms of maladaptive habitat selection in sage-grouse or possible secondary benefits of risky habitats.

Habitat Requirements and Management Recommendations for Sage Grouse

Download Habitat Requirements and Management Recommendations for Sage Grouse PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 46 pages
Book Rating : 4.3/5 ( download)

DOWNLOAD NOW!


Book Synopsis Habitat Requirements and Management Recommendations for Sage Grouse by : Mayo W. Call

Download or read book Habitat Requirements and Management Recommendations for Sage Grouse written by Mayo W. Call and published by . This book was released on 1974 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This Technical Note is primarily a review of literature on the fundamental habitat requirements of sage grouse and habitat management methods that may be used to perpetuate the species. It does not reiterate the life history, past distribution, species characteristics, and population dynamics"--Page 1.

Quantifying Habitat Importance for Greater Sage-grouse (Centrocercus Urophasianus) Population Persistence in an Energy Development Landscape

Download Quantifying Habitat Importance for Greater Sage-grouse (Centrocercus Urophasianus) Population Persistence in an Energy Development Landscape PDF Online Free

Author :
Publisher :
ISBN 13 : 9781267422484
Total Pages : 203 pages
Book Rating : 4.4/5 (224 download)

DOWNLOAD NOW!


Book Synopsis Quantifying Habitat Importance for Greater Sage-grouse (Centrocercus Urophasianus) Population Persistence in an Energy Development Landscape by : Christopher P. Kirol

Download or read book Quantifying Habitat Importance for Greater Sage-grouse (Centrocercus Urophasianus) Population Persistence in an Energy Development Landscape written by Christopher P. Kirol and published by . This book was released on 2012 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Landscapes undergoing intensive energy extraction activities present challenges to the persistence of wildlife populations. Much of the oil and gas resources in western North America, underlie sagebrush (Artemisia spp.) ecosystems. The greater sage-grouse (Centrocercus urophasianus) is a sagebrush obligate that is dependent on this ecosystem for its entire life-cycle. I developed research objectives to: 1) spatially quantify habitat quality for female greater sage-grouse during the reproductive period in the Atlantic Rim Project Area (ARPA) of south-central, Wyoming, which was being developed for coalbed natural gas (CBNG) resources, 2) utilize a non-impacted offsite reference area (Stewart Creek [SC]) to assess factors potentially contributing to changes in habitat quality resulting from energy development during the nesting period, and 3) explore microhabitat conditions that were crucial to female greater sage-grouse reproduction. In a geographic information system (GIS) framework, I quantified habitat quality for greater sage-grouse in the ARPA by generating a suite of habitat-specific environmental and anthropogenic variables at three landscape scales. My results showed that environmental and anthropogenic variables at multiple spatial scales were predictive of female greater sage-grouse occurrence and fitness. Anthropogenic variables related to CBNG development were predictive in all of the final occurrence models, suggesting that anthropogenic features were resulting in habitat avoidance through all summer life-stages. My fitness modeling illustrated habitat-specific and scale dependent variation in survival across the ARPA landscape. When mapped, the final ecological model identified habitat patches that were contributing the most to population persistence and that source-sink dynamics within the ARPA landscape may be shifting as a result of CBNG development. Documenting an anthropogenic impact that has already occurred yields limited inference unless a means of comparison is incorporated. I evaluated habitat and demographic responses of greater sage-grouse during nesting by comparing an energy development landscape (ARPA) to a non-impacted landscape (SC). I accomplished this by spatially shifting my nest occurrence and survival models from the ARPA to SC. In addition, I compared nest survival rates between the areas. My nest occurrence and survival models were predictive in SC without the CBNG predictor variable. Specific environmental variables that were robust predictors of nest occurrence in both areas included big sagebrush canopy cover and litter that represented dead standing woody vegetation and detached organic matter both at a 0.25-km2 scale. Further, the variability in shrub heights at a 1.0-km2 scale at was highly predictive of nest survival in both areas. The evidence of the predictive ability of my nest occurrence models in SC and the habitat likeness between areas allowed me to assess what greater sage-grouse nest selection in the ARPA might have looked like prior to the introduction of CBNG development by replacing time (pre-development data) with space (using SC as a spatial control). I modeled the ARPA RSF against the SC nest occurrence data (i.e., nest selection in the absence of CBNG development) and then spatially shifted the adjusted model back to the ARPA. However, the range of variability in habitat conditions between the ARPA and SC caused the spatial shifting of the models to function poorly in practice. This elucidates an important consideration in choosing spatial control related habitat variability and the predictive errors associated with extrapolation out of the range of the data used to train the RSF. Thus for a spatial control to function well, not only do habitat conditions need to be similar to the impacted area but the range of variability in habitat conditions need to also be comparable. Understanding habitat selection at macrohabitat and microhabitat scales is critical to conserving and restoring greater sage-grouse habitat. Because of the similar ecological conditions, my microhabitat selection analysis for the greater sage-grouse during the nesting, early and late brood-rearing periods incorporated both the ARPA and SC. Nest microhabitat selection was positively correlated with mountain big sagebrush (A. tridentata vaseyana) and litter cover. I found that female greater sage-grouse preferred areas with greater sagebrush cover and greater perennial grass cover during early and late brood-rearing. However, I did not find forb cover to be predictive of early or late brood-rearing occurrence. My findings suggest that sage-grouse inhabiting xeric sagebrush habitats (less than 25 cm annual precipitation) rely on sagebrush cover and grass structure for nesting as well as brood-rearing and that these structural characteristics may be more important than forb availability at the microhabitat scale. (Abstract shortened by UMI.)

The Swift Fox

Download The Swift Fox PDF Online Free

Author :
Publisher : University of Regina Press
ISBN 13 : 9780889771543
Total Pages : 268 pages
Book Rating : 4.7/5 (715 download)

DOWNLOAD NOW!


Book Synopsis The Swift Fox by : Ludwig N. Carbyn

Download or read book The Swift Fox written by Ludwig N. Carbyn and published by University of Regina Press. This book was released on 2003 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1998, biologists and endangered species experts met at an international symposium on swift foxes held in Saskatoon, Saskatchewan, to exchange information and identify the state-of-the-science of swift fox ecology and status in North America. Papers presented at the symposium, together with other written afterwards, are brought together in this peer-reviewed volume.

Upper Missouri River Breaks National Monument, Resource Management Plan

Download Upper Missouri River Breaks National Monument, Resource Management Plan PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 644 pages
Book Rating : 4.3/5 (555 download)

DOWNLOAD NOW!


Book Synopsis Upper Missouri River Breaks National Monument, Resource Management Plan by :

Download or read book Upper Missouri River Breaks National Monument, Resource Management Plan written by and published by . This book was released on 2008 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Montana Statewide Oil and Gas and Proposed Amendment of the Powder River and Billings Resource Management Plans

Download Montana Statewide Oil and Gas and Proposed Amendment of the Powder River and Billings Resource Management Plans PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 266 pages
Book Rating : 4.3/5 (555 download)

DOWNLOAD NOW!


Book Synopsis Montana Statewide Oil and Gas and Proposed Amendment of the Powder River and Billings Resource Management Plans by :

Download or read book Montana Statewide Oil and Gas and Proposed Amendment of the Powder River and Billings Resource Management Plans written by and published by . This book was released on 2003 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Survival and Summer Habitat Selection of Male Greater Sage-grouse (Centrocercus Urophasianus) in Southwestern Montana

Download Survival and Summer Habitat Selection of Male Greater Sage-grouse (Centrocercus Urophasianus) in Southwestern Montana PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 152 pages
Book Rating : 4.:/5 (173 download)

DOWNLOAD NOW!


Book Synopsis Survival and Summer Habitat Selection of Male Greater Sage-grouse (Centrocercus Urophasianus) in Southwestern Montana by : Colleen Lyn Wisinski

Download or read book Survival and Summer Habitat Selection of Male Greater Sage-grouse (Centrocercus Urophasianus) in Southwestern Montana written by Colleen Lyn Wisinski and published by . This book was released on 2007 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the 20th century, Greater Sage-Grouse (Centrocercus urophasianus) populations in North America have declined by 69-99%. In southwest Montana little is known about the factors leading to declines in sage grouse populations; as a result, there are strong concerns regarding sage grouse population trends and habitat quality. I used radio-marked male sage grouse to obtain known-fate survival data and provide locations for habitat analyses. The objectives of the study were (1) to estimate survival rates of marked birds, and (2) to characterize the habitat used by sage grouse in southwestern Montana and compare it with available habitat. I used known-fate data to estimate annual survival, and I measured habitat attributes associated with aerial locations of instrumented sage grouse (use sites) and a series of randomly chosen locations within each study site (available sites).

Habitat Selection and Physiological Condition of Female Greater Sage-grouse in Relation to Western Juniper

Download Habitat Selection and Physiological Condition of Female Greater Sage-grouse in Relation to Western Juniper PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 616 pages
Book Rating : 4.6/5 (721 download)

DOWNLOAD NOW!


Book Synopsis Habitat Selection and Physiological Condition of Female Greater Sage-grouse in Relation to Western Juniper by : Jordan C. Rabon

Download or read book Habitat Selection and Physiological Condition of Female Greater Sage-grouse in Relation to Western Juniper written by Jordan C. Rabon and published by . This book was released on 2020 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater sage-grouse (Centrocercus urophasianus, hereafter, sage-grouse) in the Great Basin have experienced loss of habitat due to expansion of western juniper (Juniperus occidentalis; hereafter, juniper) woodlands into sagebrush steppe. Juniper expansion can alter the sagebrush understory by reducing cover and species richness of herbaceous plants and shrubs, which may influence the availability of resources required by sage-grouse. On average, sage-grouse avoid juniper, especially when cover is > 10%, and avoidance of juniper can increase survival rates. However, there is significant variation in habitat selection among sage-grouse individuals when juniper cover is 10%, and some individuals demonstrate preference for these areas. This pattern is possibly related to condition of the understory; cover of sagebrush shrubs and herbaceous plants may not yet be affected in areas where juniper cover is 10%. Thus, individuals could select areas with non-zero levels of juniper cover despite potential for higher risk of mortality in those areas because resources required for survival and reproduction are still available. In this thesis, I sought to evaluate if reproductive status influences habitat selection among female sage-grouse under different reproductive status and if physiological condition among hens is influenced by juniper cover. Female sage-grouse under different reproductive status can vary in habitat selection, however, comparisons of selection among hens in landscapes undergoing juniper expansion have not been evaluated. In addition, effects that juniper may have on hen physiological condition have not been explored. I conducted my study in Owyhee County, Idaho 2017-18 where juniper expansion is considered one of the primary threats to local sage-grouse populations. In chapter 2, I investigated if reproductive status among hens with and without broods (hereafter, brooding and non-brooding hens, respectively) influences habitat selection at multiple spatial scales. Habitat selection patterns may be a function of reproductive status because specific conditions that support individuals with young may not yield the same benefits for individuals without young. I employed a use and available design and collected data on habitat through field-based surveys and using remotely-sensed layers in a Geographic Information System (GIS). I used resource selection functions to evaluate habitat selection for brooding and non-brooding hens during the brood-rearing period (30 April -26 July) and made comparisons between reproductive groups. I conducted field-based habitat surveys at 181 use and available locations from 10 (2017) and 18 (2018) hens. I collected geospatial data at 2,226 use and available locations for 11 (2017) and 21 (2018) hens. At my smallest spatial extent, brooding hens were more likely than non-brooding hens to select habitats with more cover (e.g., taller perennial grass and non-sagebrush shrubs). At greater spatial extents, both reproductive groups generally avoided cover class II ( 10-20% juniper cover) and III ( 20% juniper cover) but selected for cover class I (> 0-10% juniper cover), woody wetlands, and herbaceous wetlands with high perimeter to area ratios. Brooding hens may select for taller vegetation because these areas provide more concealment cover for chicks, thereby providing more protection from predators. In contrast, non-brooding hens may use grouping behavior as an anti-predator strategy and may not have to rely on areas with taller vegetation for protection. Hens avoided cover class II and III because resources that support demographic processes are less available in these areas. Both reproductive groups selected cover class I, possibly because food resources and concealment cover are not yet reduced to levels that result in habitat unsuitable for sage-grouse. Furthermore, brooding and non-brooding hens selected for wetland habitats because these areas may provide high amounts of food sources (i.e., forbs and insects) than the surrounding uplands. In chapter 3, I investigated relationships between concentrations of stress hormones among hens and ecological factors. Along with possibly reducing the availability of food and concealment cover, juniper trees may create suitable habitat for avian predators, potentially increasing the risk of predation for sage-grouse. In several avian species, habitat characteristics can influence concentrations of stress hormones, and elevated levels of stress hormones can have negative influences on factors related to survival and reproductive success (e.g., suppress immune function, probability of nest and brood abandonment, and slower growth rates in offspring). Hormone concentrations in sage-grouse may be positively associated with juniper cover through decreased resource availability or increased pressure from predators. I collected fecal samples at nighttime roost locations of radio-collared hens during the lekking (4 March-8 May) and brood-rearing period (24 May-26 July) to estimate corticosterone concentrations (i.e., stress hormones; hereafter, FCORTm). I evaluated relationships between vegetation cover (hereafter, ecological variables) and FCORTm in hens. I used remotely-sensed layers to estimate ecological variables within multiple spatial extents centered at breeding grounds (i.e., leks) and within separate, minimum convex polygons (MCP) that surrounded use locations of each hen. I used values from ecological variables estimated within leks and MCPs to evaluate relationships with FCORTm during the lekking and brood-rearing period, respectively. Prior to evaluating relationships with ecological variables, I accounted for factors previously shown to influence FCORTm in other vertebrate species, such as age, temperature, and sample mass. I collected 37 fecal samples from 34 hens during the lekking period (4 March-8 May) and 36 fecal samples from 22 hens during the brood-rearing period (24 May-26 July). During the lekking period, FCORTm had a negative relationship with dry mass of the fecal sample and there was no relationship with ecological variables. During the brood-rearing period, FCORTm had a positive relationship with total area of MCP but a negative relationship with the number of days of reproductive activity, maximum daily temperature (°F), and proportion of cover class I (> 0-10% juniper cover) within MCP. I may not have observed relationships between ecological variables and FCORTm during the lekking period because hens arrive on breeding grounds at different times and could vary temporally and spatially in their use of habitat surrounding each lek. During the brood-rearing period, FCORTm may decrease with greater proportions of cover class I because of density dependent factors and high productivity of shrubs and herbaceous plants in areas with young stands of juniper. Because interpretation of relationships between stress and ecological factors can be influenced by sampling and extraction procedures, my results lay the groundwork for additional studies that employ the same laboratory methods to evaluate FCORTm in sage-grouse. Although hens preferred cover class I, previous research has demonstrated lower survival among sage-grouse that occupy areas with low levels of juniper cover, and removal of cover class I would likely benefit sage-grouse. My results do suggest lower stress levels among hens that use habitats with cover class I, but this benefit likely does not outweigh the cost to survival. Given the avoidance of cover class II and III, I also suggest targeted removal of juniper around wetlands dominated by woody vegetation, patchy, herbaceous wetlands with high edge ratios, and mesic habitats with taller non-sagebrush shrubs may be the most beneficial because these habitats were preferred by hens. Wetlands and mesic habitats with tall shrubs likely benefit sage-grouse, perhaps by positively influencing survival of chicks and adults. However, additional monitoring is needed to assess benefits and costs to demographic processes among sage-grouse that select woody wetlands and tall shrubs.

Habitat Selection by Sympatric, Translocated Greater Sage-grouse and Columbian Sharp-tailed Grouse in Eastern Washington

Download Habitat Selection by Sympatric, Translocated Greater Sage-grouse and Columbian Sharp-tailed Grouse in Eastern Washington PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (896 download)

DOWNLOAD NOW!


Book Synopsis Habitat Selection by Sympatric, Translocated Greater Sage-grouse and Columbian Sharp-tailed Grouse in Eastern Washington by : Kourtney Faith Stonehouse

Download or read book Habitat Selection by Sympatric, Translocated Greater Sage-grouse and Columbian Sharp-tailed Grouse in Eastern Washington written by Kourtney Faith Stonehouse and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Habitat Selection and Nesting Ecology of Translocated Greater Sage-grouse

Download Habitat Selection and Nesting Ecology of Translocated Greater Sage-grouse PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Habitat Selection and Nesting Ecology of Translocated Greater Sage-grouse by : Kayla Lane Balderson

Download or read book Habitat Selection and Nesting Ecology of Translocated Greater Sage-grouse written by Kayla Lane Balderson and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sagebrush ecosystems are one of the most imperiled ecosystems in North America. The cumulative effects of habitat loss, fragmentation and degradation of the sagebrush ecosystem threaten the persistence of the Greater Sage-grouse. Sage-grouse depend on healthy, intact areas of sagebrush habitat throughout the year. In Alberta, the sage-grouse population is estimated to be only 5% of what it was in 1968. During the spring of 2011 and 2012, 41 sage-grouse were fitted with GPS transmitters and translocated from stable populations in Montana to active lek sites in southeast Alberta. I conducted research to improve our understanding of translocation as a management tool, and how translocated sage-grouse are affected by anthropogenic features. I examined nesting ecology including the differences in post-release movements between nesting and non-nesting hens and the extent to which nest success is affected by anthropogenic features. I also identified habitat that translocated sage-grouse select in relation to anthropogenic and natural features. My research documented some of the largest post-release movement distances, rates and areas ever recorded for grouse after being translocated. Average weekly linear distance travelled was 56 km and average area traversed was 1944 km2. Non-nesting hens had significantly higher movement rates than nesting hens. Movement rates of nesting hens decreased during the nest initiation period, whereas movement rates of non-nesting hens did not decrease until 6 weeks later. Apparent annual hen survival ranged between 31-72% across the study period. Nest initiation (53%) and nest success (29%) were low compared to other sage-grouse populations across their range. Nest success decreased with increasing distance from trees, power lines and settlements, suggesting that translocated hens are naïve to the release area and do not recognize the risks that are typically associated with certain anthropogenic features. Translocated sage-grouse were more likely to be observed, with increasing distance from all of the anthropogenic features included in the movement models: as far as 3 km from trees and gas wells, 10 km from buildings and 15 km from settlements, at least 23 km from power lines and 2.5 km from roads. Interaction models suggest that sage-grouse are avoiding anthropogenic features because of the disturbance of the features themselves, and not because the features occur in poor sagebrush habitat. My results indicate that the effects of power lines, buildings, trees and oil wells (up to 5 km) on the occurrence of sage-grouse were largest, suggesting that these features should be prioritized for removal. However, it is likely that cumulative effects of some or all anthropogenic features cause sage-grouse to select habitat further away from these features. The predicted intensity map I generated could be used to help strategically guide habitat enhancement efforts in the study area. Habitat enhancements would best be focused in areas where predicted intensity was high and suitable habitat was present yet no sage-grouse were observed, with the goal of increasing the likelihood of sage-grouse use within those areas. Future assessments of proposed developments should consider the construction of all new anthropogenic features as a potential detriment to habitat quality.

Evaluation of Greater Sage-grouse Reproductive Habitat and Response to Wind Energy Development in South-central, Wyoming

Download Evaluation of Greater Sage-grouse Reproductive Habitat and Response to Wind Energy Development in South-central, Wyoming PDF Online Free

Author :
Publisher :
ISBN 13 : 9781267621269
Total Pages : 120 pages
Book Rating : 4.6/5 (212 download)

DOWNLOAD NOW!


Book Synopsis Evaluation of Greater Sage-grouse Reproductive Habitat and Response to Wind Energy Development in South-central, Wyoming by : Chad W. LeBeau

Download or read book Evaluation of Greater Sage-grouse Reproductive Habitat and Response to Wind Energy Development in South-central, Wyoming written by Chad W. LeBeau and published by . This book was released on 2012 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: The demand for clean renewable energies and tax incentives has prompted a nationwide increase in wind energy development. Renewable energy development is occurring in a wide variety of habitats potentially impacting many species including greater sage-grouse (Centrocercus urophasianus). Greater sage-grouse require contiguous intact sagebrush (Artemisia spp.) habitats. The addition of wind energy infrastructure to these landscapes may negatively impact population viability. Greater sage-grouse are experiencing range-wide population declines and are currently listed as a candidate species under the Endangered Species Act of 1973. The purpose of my study was to investigate the response of greater sage-grouse to wind energy development. Mine is the first study to document the short-term effects of wind energy infrastructure on greater sage-grouse habitat selection, nest, brood, and female survival, and male lek attendance. I hypothesized that greater sage-grouse would select for habitats farther from wind energy infrastructure, particularly wind turbines, during the nesting, brood-rearing, and summer periods. In addition, I hypothesized that greater sage-grouse nest, brood, and female survival would decline in habitats with close proximity to wind turbines. Lastly, I hypothesized that greater sage-grouse male lek attendance would experience greater declines from pre wind energy development to 4 years post development at leks with close proximity to wind turbines compared to leks farther from turbines. My study area was located in south-central Wyoming between the towns of Medicine Bow and Hanna and consisted of one study area influenced by wind energy development (Seven Mile Hill) and a second study area that was not impacted by wind energy development (Simpson Ridge). I identified 14 leks within both study areas and conducted lek counts at each of these leks from 2008 to 2012. I captured 116 female greater sage-grouse from both study areas from 2009 to 2010. I equipped each female grouse with a VHF necklace-mounted transmitter and monitored them via telemetry during the nesting, brood-rearing, and summer periods within both study areas from 2009 to 2010. I documented greater sage-grouse habitat selection as well as nest and brood-rearing success and female survival. I used binary logistic regression in a use versus availability study design to estimate the odds of habitat selection within both study areas during the nesting, brood-rearing, and summer periods. I used Cox proportional hazards and Andersen-Gill survival models to estimate nest, brood, and female survival relative to wind energy infrastructure. Lastly, I used ratio of means tests and linear mixed effects models to estimate the degree of decline in male lek attendance at leks influenced by wind energy development versus leks with no influence 1 year prior to development to 4 years post development. Greater sage-grouse did not avoid wind turbines during the nesting and brood-rearing periods, but did select for habitats closer to turbines during the summer season. Greater sage-grouse nest and brood survival decreased in habitats in close proximity to wind turbines, whereas female survival appeared not to be affected by wind turbines. Peak male lek attendance within both study areas experienced significant declines from 1 year pre development to 4 years post development; however, this decline was not attributed to the presence of the wind energy facility. The results from my study are the first examining the short-term impacts to greater sage-grouse populations from wind energy development. Greater sage-grouse were not avoiding the wind energy development two years following construction and operation of the wind energy facility. This is likely related to high site fidelity inherent in sage-grouse. In addition, more suitable habitat may exist closer to turbines at Seven Mile Hill, which may also be driving selection. Fitness parameters including nest and brood survival were reduced in habitats of close proximity to wind turbines and may be the result of increased predation and edge effects associated with the wind energy facility. Lastly, wind energy infrastructure appears not to be affecting male lek attendance 4 years post development; however, time lags are characteristic in greater sage-grouse populations, which may result in impacts not being quantified until 2-10 years following development. Future wind energy developments should identify greater sage-grouse nest and brood-rearing habitats prior to project development to account for the decreased survival in habitats of close proximity to wind turbines. More than 2 years of occurrence data and more than 4 years of male lek attendance data may be necessary to account for the strong site fidelity and time lags present in greater sage-grouse populations.

Resource Selection, and Demographic Rates of Female Greater Sage-Grouse Following Large-Scale Wildfire

Download Resource Selection, and Demographic Rates of Female Greater Sage-Grouse Following Large-Scale Wildfire PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 181 pages
Book Rating : 4.:/5 (951 download)

DOWNLOAD NOW!


Book Synopsis Resource Selection, and Demographic Rates of Female Greater Sage-Grouse Following Large-Scale Wildfire by : Lee Jacob Foster

Download or read book Resource Selection, and Demographic Rates of Female Greater Sage-Grouse Following Large-Scale Wildfire written by Lee Jacob Foster and published by . This book was released on 2016 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the effects of habitat disturbance on a species' habitat selection patterns, and demographic rates, is essential to projecting the trajectories of populations affected by disturbance, as well as for determining the appropriate conservation actions needed to maintain those populations. Greater sage-grouse (Centrocercus urophasianus) is a species of conservation concern in western North America. The distribution of the species has been reduced by approximately half since European settlement, with concurrent and continuing population declines across its occupied range. The primary threats to the species are habitat alteration and loss, caused by multiple factors. In the western portion of its distribution, increasing wildfire activity is a primary cause of habitat loss and degradation. Single wildfires in this area may now reach extremely large sizes (>100,000 ha), and wildfires have been linked to local population declines. However, no published studies, to date, have examined the immediate effects of large-scale wildfire on sage-grouse habitat selection and demographic rates, using modern telemetry methods. I studied the habitat selection patterns, nest success, and survival of adult, and yearling female sage-grouse, captured within or near the Holloway fire, using state-of-the-art GPS-PTT telemetry methods. The Holloway fire burned ~187,000 ha of highly productive sage-grouse habitat in August, 2012. My study began during the first spring post-fire (March, 2013), and continued through February, 2015. I monitored seasonal habitat use patterns, and site-fidelity of sage-grouse, and modeled third-order seasonal resource selection, using mixed effects resource selection functions, in relation to characteristics of the post-fire habitat mosaic, terrain, mesic habitat availability, and herbaceous vegetation regeneration. I described sage-grouse nesting habitat use, nesting effort, and modeled daily nest survival in relation to temporal patterns, patch scale vegetation, biological factors, and landscape-scale habitat composition. I modeled adult and yearling female sage-grouse survival in relation to temporal patterns, biological factors, and landscape-scale habitat composition. Female sage-grouse primarily exhibited a three range seasonal movement pattern, with differentiation between breeding-nesting-early brood-rearing habitat (mean use dates: 8 Mar - 12 Jun), late brood-rearing-summer habitat (13 Jun - 20 Oct), and winter habitat (21 Oct - 7 Mar). However there was variation in seasonal range behavior among individuals. Sage-grouse exhibited considerable fidelity to all seasonal ranges, for individuals which survived >1 yr, mean distance between seasonal range centroids of the same type were 1.80 km, 1.65 km, and 3.96 km, for breeding ranges, summer ranges, and winter ranges, respectively. Within seasonal ranges, sage-grouse exhibited third-order resource selection patterns similar to those observed for populations in undisturbed habitats. Sage-grouse, at the population level, selected for level terrain throughout the year. During the breeding season sage-grouse selected for areas with increased amounts of intact sagebrush land-cover within a 1-km2 area around used locations, areas of increased NDVI values within a 6.25-km2 area, an amount of mesic habitat within a 6.25-km2 area roughly equal to that available on the landscape, and mid-level elevations. During summer, sage-grouse, at the population level, selected for an areas with an intermediate density of burned-intact habitat edge within a 1 km2 area, areas of increased NDVI values within a 6.25-km2 area, intermediate distances to mesic habitat, and high elevations. During winter, sage-grouse, at the population level, selected for increased amounts of intact sagebrush land-cover within a 0.089-km2 area, areas with decreased variation in NDVI within a 0.089-km2 area, an amount of mesic habitat within a 6.25-km2 area roughly equal to that available on the landscape, and intermediate elevations. There was considerable variation in third-order resource selection patterns among individuals during all seasons. Sage-grouse nest success was consistently low during the study (2013: 19.3%, 2014: 30.1%), and nest initiation rates were average to high (2013: 1st nest initiation = 90.5%, 2nd nest initiation = 23.1%; 2014: 1st nest initiation = 100%, 2nd nest initiation = 57.1%). Daily nest survival rates were influenced by an interaction between year and nesting attempt, and by forb cover within 5 m of the nest. Nest survival over the incubation period was consistently low for 1st and 2nd nests during 2013, and for 1st nests during 2014 (range: 0.131 - 0.212), but increased to 0.744 for 2nd nests during 2014. Forb cover within 5 m of the nest had a positive effect on daily nest survival rates, with a 1% increase in forb cover increasing the probability of a nest surviving a given day by 1.02 times. We did not detect strong direct effects of habitat or biological characteristics on survival of adult and yearling female sage-grouse. Rather, survival varied by month with lowest survival occurring in April and August of each year, and highest survival occurring during the winter. While patterns of monthly survival were similar between years, there was a strong, negative additive effect on survival which extended from the beginning of the study (March, 2013), through the end of the first post fire growing season (July, 2013). Although monthly survival increased following the end of the 1st post-fire growing season, yearly survival over both the 1st and 2nd biological years post-fire was low (March 2013 - February 2014: 24.0%; March 2014 - February 2015: 37.9%). These results indicate that female greater-sage grouse do not respond to wildfire related habitat disturbance through emigration, and rather continue to attempt to exist and reproduce in habitats disturbed by wildfire during the immediate years following a fire. While, due to site-fidelity, sage-grouse are not able to leave wildfire affected seasonal ranges, within those seasonal ranges they still attempt to utilize habitat components which most closely match their life-history requirements. However, this behavior appears to have an acute fitness cost to individuals, with reduced nesting success and survival of individuals utilizing fire-affected habitats during the first two years post-fire. This reduction in demographic rates likely explains observed sage-grouse population declines following wildfire, and indicates that these population declines are not the result of sage-grouse emigration away from fire-affected leks, but rather a true decline in the number of individual sage-grouse on the landscape following large-scale wildfire.