Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Gorensteinness And Symmetry For One Dimensional Cohen Macaulay Rings
Download Gorensteinness And Symmetry For One Dimensional Cohen Macaulay Rings full books in PDF, epub, and Kindle. Read online Gorensteinness And Symmetry For One Dimensional Cohen Macaulay Rings ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Advances in Rings, Modules and Factorizations by : Alberto Facchini
Download or read book Advances in Rings, Modules and Factorizations written by Alberto Facchini and published by Springer Nature. This book was released on 2020-06-02 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Occasioned by the international conference "Rings and Factorizations" held in February 2018 at University of Graz, Austria, this volume represents a wide range of research trends in the theory of commutative and non-commutative rings and their modules, including multiplicative ideal theory, Dedekind and Krull rings and their generalizations, rings of integer valued-polynomials, topological aspects of ring theory, factorization theory in rings and semigroups and direct-sum decompositions of modules. The volume will be of interest to researchers seeking to extend or utilize work in these areas as well as graduate students wishing to find entryways into active areas of current research in algebra. A novel aspect of the volume is an emphasis on how diverse types of algebraic structures and contexts (rings, modules, semigroups, categories) may be treated with overlapping and reinforcing approaches.
Book Synopsis Introduction to Plane Algebraic Curves by : Ernst Kunz
Download or read book Introduction to Plane Algebraic Curves written by Ernst Kunz and published by Springer Science & Business Media. This book was released on 2007-06-10 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Employs proven conception of teaching topics in commutative algebra through a focus on their applications to algebraic geometry, a significant departure from other works on plane algebraic curves in which the topological-analytic aspects are stressed *Requires only a basic knowledge of algebra, with all necessary algebraic facts collected into several appendices * Studies algebraic curves over an algebraically closed field K and those of prime characteristic, which can be applied to coding theory and cryptography * Covers filtered algebras, the associated graded rings and Rees rings to deduce basic facts about intersection theory of plane curves, applications of which are standard tools of computer algebra * Examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook
Book Synopsis Numerical Semigroups by : Valentina Barucci
Download or read book Numerical Semigroups written by Valentina Barucci and published by Springer Nature. This book was released on 2020-05-13 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state of the art on numerical semigroups and related subjects, offering different perspectives on research in the field and including results and examples that are very difficult to find in a structured exposition elsewhere. The contents comprise the proceedings of the 2018 INdAM “International Meeting on Numerical Semigroups”, held in Cortona, Italy. Talks at the meeting centered not only on traditional types of numerical semigroups, such as Arf or symmetric, and their usual properties, but also on related types of semigroups, such as affine, Puiseux, Weierstrass, and primary, and their applications in other branches of algebra, including semigroup rings, coding theory, star operations, and Hilbert functions. The papers in the book reflect the variety of the talks and derive from research areas including Semigroup Theory, Factorization Theory, Algebraic Geometry, Combinatorics, Commutative Algebra, Coding Theory, and Number Theory. The book is intended for researchers and students who want to learn about recent developments in the theory of numerical semigroups and its connections with other research fields.
Book Synopsis Multiplicative Ideal Theory and Factorization Theory by : Scott Chapman
Download or read book Multiplicative Ideal Theory and Factorization Theory written by Scott Chapman and published by Springer. This book was released on 2016-07-29 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22–26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prüfer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.
Book Synopsis $p$-Adic Analysis, Arithmetic and Singularities by : Carlos Galindo
Download or read book $p$-Adic Analysis, Arithmetic and Singularities written by Carlos Galindo and published by American Mathematical Society. This book was released on 2022-05-11 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the 2019 Lluís A. Santaló Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24–28, 2019, at the Universidad Internacional Menéndez Pelayo, Santander, Spain. The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications. This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of Archimedean, $p$-adic, and motivic zeta functions, singularities of plane curves and their Poincaré series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists. This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics.
Book Synopsis Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics by : Gert-Martin Greuel
Download or read book Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics written by Gert-Martin Greuel and published by Springer. This book was released on 2018-09-18 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together recent, original research and survey articles by leading experts in several fields that include singularity theory, algebraic geometry and commutative algebra. The motivation for this collection comes from the wide-ranging research of the distinguished mathematician, Antonio Campillo, in these and related fields. Besides his influence in the mathematical community stemming from his research, Campillo has also endeavored to promote mathematics and mathematicians' networking everywhere, especially in Spain, Latin America and Europe. Because of his impressive achievements throughout his career, we dedicate this book to Campillo in honor of his 65th birthday. Researchers and students from the world-wide, and in particular Latin American and European, communities in singularities, algebraic geometry, commutative algebra, coding theory, and other fields covered in the volume, will have interest in this book.
Book Synopsis Cohen-Macaulay Representations by : Graham J. Leuschke
Download or read book Cohen-Macaulay Representations written by Graham J. Leuschke and published by American Mathematical Soc.. This book was released on 2012-05-02 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conjectures--is covered clearly and completely. Much of the content has never before appeared in book form. Examples include the representation theory of Artinian pairs and Burban-Drozd's related construction in dimension two, an introduction to the McKay correspondence from the point of view of maximal Cohen-Macaulay modules, Auslander-Buchweitz's MCM approximation theory, and a careful treatment of nonzero characteristic. The remaining seven chapters present results on bounded and countable CM type and on the representation theory of totally reflexive modules.
Book Synopsis Normal Surface Singularities by : András Némethi
Download or read book Normal Surface Singularities written by András Némethi and published by Springer Nature. This book was released on 2022-10-07 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a comprehensive introduction to the theory of complex normal surface singularities, with a special emphasis on connections to low-dimensional topology. In this way, it unites the analytic approach with the more recent topological one, combining their tools and methods. In the first chapters, the book sets out the foundations of the theory of normal surface singularities. This includes a comprehensive presentation of the properties of the link (as an oriented 3-manifold) and of the invariants associated with a resolution, combined with the structure and special properties of the line bundles defined on a resolution. A recurring theme is the comparison of analytic and topological invariants. For example, the Poincaré series of the divisorial filtration is compared to a topological zeta function associated with the resolution graph, and the sheaf cohomologies of the line bundles are compared to the Seiberg–Witten invariants of the link. Equivariant Ehrhart theory is introduced to establish surgery-additivity formulae of these invariants, as well as for the regularization procedures of multivariable series. In addition to recent research, the book also provides expositions of more classical subjects such as the classification of plane and cuspidal curves, Milnor fibrations and smoothing invariants, the local divisor class group, and the Hilbert–Samuel function. It contains a large number of examples of key families of germs: rational, elliptic, weighted homogeneous, superisolated and splice-quotient. It provides concrete computations of the topological invariants of their links (Casson(–Walker) and Seiberg–Witten invariants, Turaev torsion) and of the analytic invariants (geometric genus, Hilbert function of the divisorial filtration, and the analytic semigroup associated with the resolution). The book culminates in a discussion of the topological and analytic lattice cohomologies (as categorifications of the Seiberg–Witten invariant and of the geometric genus respectively) and of the graded roots. Several open problems and conjectures are also formulated. Normal Surface Singularities provides researchers in algebraic and differential geometry, singularity theory, complex analysis, and low-dimensional topology with an invaluable reference on this rich topic, offering a unified presentation of the major results and approaches.
Book Synopsis Symmetry and Spaces by : H.E.A. Eddy Campbell
Download or read book Symmetry and Spaces written by H.E.A. Eddy Campbell and published by Springer Science & Business Media. This book was released on 2010-01-23 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes articles that are a sampling of modern day algebraic geometry with associated group actions from its leading experts. There are three papers examining various aspects of modular invariant theory (Broer, Elmer and Fleischmann, Shank and Wehlau), and seven papers concentrating on characteristic 0 (Brion, Daigle and Freudenberg, Greb and Heinzner, Helminck, Kostant, Kraft and Wallach, Traves).
Book Synopsis Determinantal Rings by : Winfried Bruns
Download or read book Determinantal Rings written by Winfried Bruns and published by Springer. This book was released on 2006-11-14 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.
Book Synopsis Integral Closure of Ideals, Rings, and Modules by : Craig Huneke
Download or read book Integral Closure of Ideals, Rings, and Modules written by Craig Huneke and published by Cambridge University Press. This book was released on 2006-10-12 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 984 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Homological Theory of Representations by : Henning Krause
Download or read book Homological Theory of Representations written by Henning Krause and published by Cambridge University Press. This book was released on 2021-11-18 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern developments in representation theory rely heavily on homological methods. This book for advanced graduate students and researchers introduces these methods from their foundations up and discusses several landmark results that illustrate their power and beauty. Categorical foundations include abelian and derived categories, with an emphasis on localisation, spectra, and purity. The representation theoretic focus is on module categories of Artin algebras, with discussions of the representation theory of finite groups and finite quivers. Also covered are Gorenstein and quasi-hereditary algebras, including Schur algebras, which model polynomial representations of general linear groups, and the Morita theory of derived categories via tilting objects. The final part is devoted to a systematic introduction to the theory of purity for locally finitely presented categories, covering pure-injectives, definable subcategories, and Ziegler spectra. With its clear, detailed exposition of important topics in modern representation theory, many of which were unavailable in one volume until now, it deserves a place in every representation theorist's library.
Book Synopsis Algebra, $K$-Theory, Groups, and Education by : Hyman Bass
Download or read book Algebra, $K$-Theory, Groups, and Education written by Hyman Bass and published by American Mathematical Soc.. This book was released on 1999 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes expositions of key developments over the past four decades in commutative and non-commutative algebra, algebraic $K$-theory, infinite group theory, and applications of algebra to topology. Many of the articles are based on lectures given at a conference at Columbia University honoring the 65th birthday of Hyman Bass. Important topics related to Bass's mathematical interests are surveyed by leading experts in the field. Of particular note is a professional autobiography of Professor Bass, and an article by Deborah Ball on mathematical education. The range of subjects covered in the book offers a convenient single source for topics in the field.
Book Synopsis Gorenstein Dimensions by : Lars W. Christensen
Download or read book Gorenstein Dimensions written by Lars W. Christensen and published by Springer. This book was released on 2007-05-06 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a reference for mathematicians working with homological dimensions in commutative algebra and as an introduction to Gorenstein dimensions for graduate students with an interest in the same. Any admirer of classics like the Auslander-Buchsbaum-Serre characterization of regular rings, and the Bass and Auslander-Buchsbaum formulas for injective and projective dimension of f.g. modules will be intrigued by this book's content. Readers should be well-versed in commutative algebra and standard applications of homological methods. The framework is that of complexes, but all major results are restated for modules in traditional notation, and an appendix makes the proofs accessible for even the casual user of hyperhomological methods.
Book Synopsis Handbook of Tilting Theory by : Lidia Angeleri Hügel
Download or read book Handbook of Tilting Theory written by Lidia Angeleri Hügel and published by Cambridge University Press. This book was released on 2007-01-04 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: A handbook of key articles providing both an introduction and reference for newcomers and experts alike.
Book Synopsis Commutative Algebra by : David Eisenbud
Download or read book Commutative Algebra written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.