Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Geometry And Martingales In Banach Spaces
Download Geometry And Martingales In Banach Spaces full books in PDF, epub, and Kindle. Read online Geometry And Martingales In Banach Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Geometry and Martingales in Banach Spaces by : Wojbor A. Woyczynski
Download or read book Geometry and Martingales in Banach Spaces written by Wojbor A. Woyczynski and published by CRC Press. This book was released on 2018-10-12 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry and Martingales in Banach Spaces provides a compact exposition of the results explaining the interrelations existing between the metric geometry of Banach spaces and the theory of martingales, and general random vectors with values in those Banach spaces. Geometric concepts such as dentability, uniform smoothness, uniform convexity, Beck convexity, etc. turn out to characterize asymptotic behavior of martingales with values in Banach spaces.
Book Synopsis Martingales in Banach Spaces by : Gilles Pisier
Download or read book Martingales in Banach Spaces written by Gilles Pisier and published by Cambridge University Press. This book was released on 2016-06-06 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on applications of martingales to the geometry of Banach spaces, and is accessible to graduate students.
Book Synopsis Handbook of the Geometry of Banach Spaces by :
Download or read book Handbook of the Geometry of Banach Spaces written by and published by Elsevier. This book was released on 2001-08-15 with total page 1017 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Download or read book Vector Measures written by Joseph Diestel and published by American Mathematical Soc.. This book was released on 1977-06-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this survey the authors endeavor to give a comprehensive examination of the theory of measures having values in Banach spaces. The interplay between topological and geometric properties of Banach spaces and the properties of measures having values in Banach spaces is the unifying theme. The first chapter deals with countably additive vector measures finitely additive vector measures, the Orlicz-Pettis theorem and its relatives. Chapter II concentrates on measurable vector valued functions and the Bochner integral. Chapter III begins the study of the interplay among the Radon-Nikodym theorem for vector measures, operators on $L_1$ and topological properties of Banach spaces. A variety of applications is given in the next chapter. Chapter V deals with martingales of Bochner integrable functions and their relation to dentable subsets of Banach spaces. Chapter VI is devoted to a measure-theoretic study of weakly compact absolutely summing and nuclear operators on spaces of continuous functions. In Chapter VII a detailed study of the geometry of Banach spaces with the Radon-Nikodym property is given. The next chapter deals with the use of Radon-Nikodym theorems in the study of tensor products of Banach spaces. The last chapter concludes the survey with a discussion of the Liapounoff convexity theorem and other geometric properties of the range of a vector measure. Accompanying each chapter is an extensive survey of the literature and open problems.
Book Synopsis Martingales in Banach Spaces by : Gilles Pisier
Download or read book Martingales in Banach Spaces written by Gilles Pisier and published by Cambridge University Press. This book was released on 2016-06-06 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.
Book Synopsis Handbook of the Geometry of Banach Spaces by : William B. Johnson
Download or read book Handbook of the Geometry of Banach Spaces written by William B. Johnson and published by Elsevier. This book was released on 2001 with total page 880 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Book Synopsis Introduction to Banach Spaces and their Geometry by :
Download or read book Introduction to Banach Spaces and their Geometry written by and published by Elsevier. This book was released on 2011-10-10 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Banach Spaces and their Geometry
Book Synopsis Martingale Theory in Harmonic Analysis and Banach Spaces by : J.-A. Chao
Download or read book Martingale Theory in Harmonic Analysis and Banach Spaces written by J.-A. Chao and published by Springer. This book was released on 2006-11-17 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Hardy Martingales by : Paul F. X. Müller
Download or read book Hardy Martingales written by Paul F. X. Müller and published by Cambridge University Press. This book was released on 2022-07-14 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the probabilistic methods around Hardy martingales for applications to complex, harmonic, and functional analysis.
Book Synopsis Analysis in Banach Spaces by : Tuomas Hytönen
Download or read book Analysis in Banach Spaces written by Tuomas Hytönen and published by Springer. This book was released on 2018-07-07 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem. Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes. The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.
Book Synopsis Geometry of Banach Spaces and Related Fields by : Gilles Godefroy
Download or read book Geometry of Banach Spaces and Related Fields written by Gilles Godefroy and published by American Mathematical Society. This book was released on 2024-03-27 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive presentation of recent approaches to and results about properties of various classes of functional spaces, such as Banach spaces, uniformly convex spaces, function spaces, and Banach algebras. Each of the 12 articles in this book gives a broad overview of current subjects and presents open problems. Each article includes an extensive bibliography. This book is dedicated to Professor Per. H. Enflo, who made significant contributions to functional analysis and operator theory.
Book Synopsis Limit Theorems for Sums of Exchangeable Random Variables by : Robert Lee Taylor
Download or read book Limit Theorems for Sums of Exchangeable Random Variables written by Robert Lee Taylor and published by Rowman & Littlefield Publishers. This book was released on 1985 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: To find more information about Rowman and Littlefield titles, please visit www.rowmanlittlefield.com.
Book Synopsis Jordan Structures in Geometry and Analysis by : Cho-Ho Chu
Download or read book Jordan Structures in Geometry and Analysis written by Cho-Ho Chu and published by Cambridge University Press. This book was released on 2011-11-17 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Jordan theory has developed rapidly in the last three decades, but very few books describe its diverse applications. Here, the author discusses some recent advances of Jordan theory in differential geometry, complex and functional analysis, with the aid of numerous examples and concise historical notes. These include: the connection between Jordan and Lie theory via the Tits–Kantor–Koecher construction of Lie algebras; a Jordan algebraic approach to infinite dimensional symmetric manifolds including Riemannian symmetric spaces; the one-to-one correspondence between bounded symmetric domains and JB*-triples; and applications of Jordan methods in complex function theory. The basic structures and some functional analytic properties of JB*-triples are also discussed. The book is a convenient reference for experts in complex geometry or functional analysis, as well as an introduction to these areas for beginning researchers. The recent applications of Jordan theory discussed in the book should also appeal to algebraists.
Book Synopsis High-Dimensional Probability by : Roman Vershynin
Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Book Synopsis Orthonormal Systems and Banach Space Geometry by : Albrecht Pietsch
Download or read book Orthonormal Systems and Banach Space Geometry written by Albrecht Pietsch and published by Cambridge University Press. This book was released on 1998-09-10 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the interplay between orthonormal expansions and Banach space geometry.
Book Synopsis Alice and Bob Meet Banach by : Guillaume Aubrun
Download or read book Alice and Bob Meet Banach written by Guillaume Aubrun and published by American Mathematical Soc.. This book was released on 2017-08-30 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quest to build a quantum computer is arguably one of the major scientific and technological challenges of the twenty-first century, and quantum information theory (QIT) provides the mathematical framework for that quest. Over the last dozen or so years, it has become clear that quantum information theory is closely linked to geometric functional analysis (Banach space theory, operator spaces, high-dimensional probability), a field also known as asymptotic geometric analysis (AGA). In a nutshell, asymptotic geometric analysis investigates quantitative properties of convex sets, or other geometric structures, and their approximate symmetries as the dimension becomes large. This makes it especially relevant to quantum theory, where systems consisting of just a few particles naturally lead to models whose dimension is in the thousands, or even in the billions. Alice and Bob Meet Banach is aimed at multiple audiences connected through their interest in the interface of QIT and AGA: at quantum information researchers who want to learn AGA or apply its tools; at mathematicians interested in learning QIT, or at least the part of QIT that is relevant to functional analysis/convex geometry/random matrix theory and related areas; and at beginning researchers in either field. Moreover, this user-friendly book contains numerous tables and explicit estimates, with reasonable constants when possible, which make it a useful reference even for established mathematicians generally familiar with the subject.
Book Synopsis The Large Scale Structure of Space-Time by : S. W. Hawking
Download or read book The Large Scale Structure of Space-Time written by S. W. Hawking and published by Cambridge University Press. This book was released on 1975-02-27 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.