Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Geometrie Des Espaces De Riemann
Download Geometrie Des Espaces De Riemann full books in PDF, epub, and Kindle. Read online Geometrie Des Espaces De Riemann ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Differential Geometry by : I. M. James
Download or read book Differential Geometry written by I. M. James and published by Elsevier. This book was released on 2014-05-16 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematical Works of J. H. C. Whitehead, Volume 1: Differential Geometry contains all of Whitehead's published work on differential geometry, along with some papers on algebras. Most of these were written in the period 1929-1937, but a few later articles are included. The book begins with a list of Whitehead's works, in chronological order of writing as well as a biographical note by M. H. A. Newman and Barbara Whitehead, and a mathematical appreciation by John Milnor. This is followed by separate chapters on topics such as linear connections; a method of obtaining normal representations for a projective connection; representation of projective spaces; convex regions in the geometry of paths; locally homogeneous spaces in differential geometry; and the decomposition of an infinitesimal group. Also included are chapters on locally homogeneous spaces in differential geometry; Maurer's equations; linear associative algebras; an expression of Hopf's invariant as an integral; and normalizators of transformation groups.
Book Synopsis Differential Geometry, Lie Groups, and Symmetric Spaces by : Sigurdur Helgason
Download or read book Differential Geometry, Lie Groups, and Symmetric Spaces written by Sigurdur Helgason and published by Academic Press. This book was released on 1979-02-09 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book is intended as a textbook and reference work on three topics in the title. Together with a volume in progress on "Groups and Geometric Analysis" it supersedes my "Differential Geometry and Symmetric Spaces," published in 1962. Since that time several branches of the subject, particularly the function theory on symmetric spaces, have developed substantially. I felt that an expanded treatment might now be useful.
Book Synopsis Lie Groups, Lie Algebras, and Some of Their Applications by : Robert Gilmore
Download or read book Lie Groups, Lie Algebras, and Some of Their Applications written by Robert Gilmore and published by Courier Corporation. This book was released on 2012-05-23 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.
Book Synopsis A Panoramic View of Riemannian Geometry by : Marcel Berger
Download or read book A Panoramic View of Riemannian Geometry written by Marcel Berger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the living topics of Riemannian Geometry and details the main results known to date. The results are stated without detailed proofs but the main ideas involved are described, affording the reader a sweeping panoramic view of almost the entirety of the field. From the reviews "The book has intrinsic value for a student as well as for an experienced geometer. Additionally, it is really a compendium in Riemannian Geometry." --MATHEMATICAL REVIEWS
Book Synopsis Riemannian Geometry During the Second Half of the Twentieth Century by : Marcel Berger
Download or read book Riemannian Geometry During the Second Half of the Twentieth Century written by Marcel Berger and published by American Mathematical Soc.. This book was released on 2000 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: During its first hundred years, Riemannian geometry enjoyed steady, but undistinguished growth as a field of mathematics. In the last fifty years of the twentieth century, however, it has exploded with activity. Berger marks the start of this period with Rauch's pioneering paper of 1951, which contains the first real pinching theorem and an amazing leap in the depth of the connection between geometry and topology. Since then, the field has become so rich that it is almost impossible for the uninitiated to find their way through it. Textbooks on the subject invariably must choose a particular approach, thus narrowing the path. In this book, Berger provides a remarkable survey of the main developments in Riemannian geometry in the second half of the last fifty years. One of the most powerful features of Riemannian manifolds is that they have invariants of (at least) three different kinds. There are the geometric invariants: topology, the metric, various notions of curvature, and relationships among these. There are analytic invariants: eigenvalues of the Laplacian, wave equations, Schrödinger equations. There are the invariants that come from Hamiltonian mechanics: geodesic flow, ergodic properties, periodic geodesics. Finally, there are important results relating different types of invariants. To keep the size of this survey manageable, Berger focuses on five areas of Riemannian geometry: Curvature and topology; the construction of and the classification of space forms; distinguished metrics, especially Einstein metrics; eigenvalues and eigenfunctions of the Laplacian; the study of periodic geodesics and the geodesic flow. Other topics are treated in less detail in a separate section. While Berger's survey is not intended for the complete beginner (one should already be familiar with notions of curvature and geodesics), he provides a detailed map to the major developments of Riemannian geometry from 1950 to 1999. Important threads are highlighted, with brief descriptions of the results that make up that thread. This supremely scholarly account is remarkable for its careful citations and voluminous bibliography. If you wish to learn about the results that have defined Riemannian geometry in the last half century, start with this book.
Book Synopsis Philosophy of Geometry from Riemann to Poincaré by : R. Torretti
Download or read book Philosophy of Geometry from Riemann to Poincaré written by R. Torretti and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry has fascinated philosophers since the days of Thales and Pythagoras. In the 17th and 18th centuries it provided a paradigm of knowledge after which some thinkers tried to pattern their own metaphysical systems. But after the discovery of non-Euclidean geometries in the 19th century, the nature and scope of geometry became a bone of contention. Philosophical concern with geometry increased in the 1920's after Einstein used Riemannian geometry in his theory of gravitation. During the last fifteen or twenty years, renewed interest in the latter theory -prompted by advances in cosmology -has brought geometry once again to the forefront of philosophical discussion. The issues at stake in the current epistemological debate about geometry can only be understood in the light of history, and, in fact, most recent works on the subject include historical material. In this book, I try to give a selective critical survey of modern philosophy of geometry during its seminal period, which can be said to have begun shortly after 1850 with Riemann's generalized conception of space and to achieve some sort of completion at the turn of the century with Hilbert's axiomatics and Poincare's conventionalism. The philosophy of geometry of Einstein and his contemporaries will be the subject of another book. The book is divided into four chapters. Chapter 1 provides back ground information about the history of science and philosophy.
Book Synopsis Riemannian Geometry In An Orthogonal Frame by :
Download or read book Riemannian Geometry In An Orthogonal Frame written by and published by World Scientific. This book was released on 2001-12-10 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foreword by S S Chern In 1926-27, Cartan gave a series of lectures in which he introduced exterior forms at the very beginning and used extensively orthogonal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. In 1960, Sergei P Finikov translated from French into Russian his notes of these Cartan's lectures and published them as a book entitled Riemannian Geometry in an Orthogonal Frame. This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. It has now been translated into English by Vladislav V Goldberg, currently Distinguished Professor of Mathematics at the New Jersey Institute of Technology, USA, who also edited the Russian edition.
Book Synopsis Riemannian Geometry in an Orthogonal Frame by : Elie Cartan
Download or read book Riemannian Geometry in an Orthogonal Frame written by Elie Cartan and published by World Scientific. This book was released on 2001 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elie Cartan's book Geometry of Riemannian Manifolds (1928) was one of the best introductions to his methods. It was based on lectures given by the author at the Sorbonne in the academic year 1925-26. A modernized and extensively augmented edition appeared in 1946 (2nd printing, 1951, and 3rd printing, 1988). Cartan's lectures in 1926-27 were different -- he introduced exterior forms at the very beginning and used extensively orthonormal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. The lectures were translated into Russian in the book Riemannian Geometry in an Orthogonal Frame (1960). This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. The only book of Elie Cartan that was not available in English, it has now been translated into English by Vladislav V Goldberg, the editor of the Russian edition.
Book Synopsis Fundamentals of Differential Geometry by : Serge Lang
Download or read book Fundamentals of Differential Geometry written by Serge Lang and published by Springer Science & Business Media. This book was released on 2001-09-21 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER
Book Synopsis Foundations of Differential Geometry, Volume 2 by : Shoshichi Kobayashi
Download or read book Foundations of Differential Geometry, Volume 2 written by Shoshichi Kobayashi and published by John Wiley & Sons. This book was released on 1996-02-22 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume introduction to differential geometry, part of Wiley's popular Classics Library, lays the foundation for understanding an area of study that has become vital to contemporary mathematics. It is completely self-contained and will serve as a reference as well as a teaching guide. Volume 1 presents a systematic introduction to the field from a brief survey of differentiable manifolds, Lie groups and fibre bundles to the extension of local transformations and Riemannian connections. The second volume continues with the study of variational problems on geodesics through differential geometric aspects of characteristic classes. Both volumes familiarize readers with basic computational techniques.
Book Synopsis Geometry of Hypersurfaces by : Thomas E. Cecil
Download or read book Geometry of Hypersurfaces written by Thomas E. Cecil and published by Springer. This book was released on 2015-10-30 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research.
Book Synopsis Riemannian Geometry by : Luther Pfahler Eisenhart
Download or read book Riemannian Geometry written by Luther Pfahler Eisenhart and published by Princeton University Press. This book was released on 1997-11-02 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: In his classic work of geometry, Euclid focused on the properties of flat surfaces. The study of curved surfaces, or non-Euclidean geometry, flowered in the late 19th century, thanks to mathematicians such as Riemann. In this book, Luther Eisenhart succinctly surveys the key concepts of Riemannian geometry, addressing mathematicians and theoretical physicists alike.
Book Synopsis Semisimple Groups and Riemannian Symmetric Spaces by : Armand Borel
Download or read book Semisimple Groups and Riemannian Symmetric Spaces written by Armand Borel and published by Springer. This book was released on 1998-12-15 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Feynman And Computation by : Anthony Hey
Download or read book Feynman And Computation written by Anthony Hey and published by CRC Press. This book was released on 2018-03-08 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational properties of use to biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices.
Book Synopsis Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis by : Victor Patrangenaru
Download or read book Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis written by Victor Patrangenaru and published by CRC Press. This book was released on 2015-09-18 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: A New Way of Analyzing Object Data from a Nonparametric ViewpointNonparametric Statistics on Manifolds and Their Applications to Object Data Analysis provides one of the first thorough treatments of the theory and methodology for analyzing data on manifolds. It also presents in-depth applications to practical problems arising in a variety of fields
Book Synopsis Complexity, Entropy And The Physics Of Information by : Wojciech H. Zurek
Download or read book Complexity, Entropy And The Physics Of Information written by Wojciech H. Zurek and published by CRC Press. This book was released on 2018-03-08 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has emerged from a meeting held during the week of May 29 to June 2, 1989, at St. John’s College in Santa Fe under the auspices of the Santa Fe Institute. The (approximately 40) official participants as well as equally numerous “groupies” were enticed to Santa Fe by the above “manifesto.” The book—like the “Complexity, Entropy and the Physics of Information” meeting explores not only the connections between quantum and classical physics, information and its transfer, computation, and their significance for the formulation of physical theories, but it also considers the origins and evolution of the information-processing entities, their complexity, and the manner in which they analyze their perceptions to form models of the Universe. As a result, the contributions can be divided into distinct sections only with some difficulty. Indeed, I regard this degree of overlapping as a measure of the success of the meeting. It signifies consensus about the important questions and on the anticipated answers: they presumably lie somewhere in the “border territory,” where information, physics, complexity, quantum, and computation all meet.
Book Synopsis Differential Geometry and Symmetric Spaces by :
Download or read book Differential Geometry and Symmetric Spaces written by and published by Academic Press. This book was released on 1962-01-01 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Geometry and Symmetric Spaces