Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Geometric Models For Noncommutative Algebras
Download Geometric Models For Noncommutative Algebras full books in PDF, epub, and Kindle. Read online Geometric Models For Noncommutative Algebras ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Geometric Models for Noncommutative Algebras by : Ana Cannas da Silva
Download or read book Geometric Models for Noncommutative Algebras written by Ana Cannas da Silva and published by American Mathematical Soc.. This book was released on 1999 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is based on a course, ``Geometric Models for Noncommutative Algebras'' taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras. Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids. Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.
Book Synopsis Noncommutative Geometry by : Alain Connes
Download or read book Noncommutative Geometry written by Alain Connes and published by Springer. This book was released on 2003-12-15 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Book Synopsis Noncommutative Geometry and Particle Physics by : Walter D. van Suijlekom
Download or read book Noncommutative Geometry and Particle Physics written by Walter D. van Suijlekom and published by Springer. This book was released on 2014-07-21 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.
Book Synopsis Noncommutative Geometry, Quantum Fields and Motives by : Alain Connes
Download or read book Noncommutative Geometry, Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Book Synopsis Advances in Noncommutative Geometry by : Ali Chamseddine
Download or read book Advances in Noncommutative Geometry written by Ali Chamseddine and published by Springer Nature. This book was released on 2020-01-13 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23–April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.
Book Synopsis Quantization, Geometry and Noncommutative Structures in Mathematics and Physics by : Alexander Cardona
Download or read book Quantization, Geometry and Noncommutative Structures in Mathematics and Physics written by Alexander Cardona and published by Springer. This book was released on 2017-10-26 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.
Book Synopsis An Invitation To Noncommutative Geometry by : Matilde Marcolli
Download or read book An Invitation To Noncommutative Geometry written by Matilde Marcolli and published by World Scientific. This book was released on 2008-02-11 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.
Book Synopsis An Introduction to Noncommutative Spaces and Their Geometries by : Giovanni Landi
Download or read book An Introduction to Noncommutative Spaces and Their Geometries written by Giovanni Landi and published by Springer Science & Business Media. This book was released on 2003-07-01 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes are an introduction to several ideas and applications of noncommutative geometry. It starts with a not necessarily commutative but associative algebra which is thought of as the algebra of functions on some 'virtual noncommutative space'. Attention is switched from spaces, which in general do not even exist, to algebras of functions. In these notes, particular emphasis is put on seeing noncommutative spaces as concrete spaces, namely as a collection of points with a topology. The necessary mathematical tools are presented in a systematic and accessible way and include among other things, C'*-algebras, module theory and K-theory, spectral calculus, forms and connection theory. Application to Yang--Mills, fermionic, and gravity models are described. Also the spectral action and the related invariance under automorphism of the algebra is illustrated. Some recent work on noncommutative lattices is presented. These lattices arose as topologically nontrivial approximations to 'contuinuum' topological spaces. They have been used to construct quantum-mechanical and field-theory models, alternative models to lattice gauge theory, with nontrivial topological content. This book will be essential to physicists and mathematicians with an interest in noncommutative geometry and its uses in physics.
Book Synopsis Noncommutative Deformation Theory by : Eivind Eriksen
Download or read book Noncommutative Deformation Theory written by Eivind Eriksen and published by CRC Press. This book was released on 2017-09-19 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative Deformation Theory is aimed at mathematicians and physicists studying the local structure of moduli spaces in algebraic geometry. This book introduces a general theory of noncommutative deformations, with applications to the study of moduli spaces of representations of associative algebras and to quantum theory in physics. An essential part of this theory is the study of obstructions of liftings of representations using generalised (matric) Massey products. Suitable for researchers in algebraic geometry and mathematical physics interested in the workings of noncommutative algebraic geometry, it may also be useful for advanced graduate students in these fields.
Book Synopsis Quantum Riemannian Geometry by : Edwin J. Beggs
Download or read book Quantum Riemannian Geometry written by Edwin J. Beggs and published by Springer Nature. This book was released on 2020-01-31 with total page 826 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive account of a modern generalisation of differential geometry in which coordinates need not commute. This requires a reinvention of differential geometry that refers only to the coordinate algebra, now possibly noncommutative, rather than to actual points. Such a theory is needed for the geometry of Hopf algebras or quantum groups, which provide key examples, as well as in physics to model quantum gravity effects in the form of quantum spacetime. The mathematical formalism can be applied to any algebra and includes graph geometry and a Lie theory of finite groups. Even the algebra of 2 x 2 matrices turns out to admit a rich moduli of quantum Riemannian geometries. The approach taken is a `bottom up’ one in which the different layers of geometry are built up in succession, starting from differential forms and proceeding up to the notion of a quantum `Levi-Civita’ bimodule connection, geometric Laplacians and, in some cases, Dirac operators. The book also covers elements of Connes’ approach to the subject coming from cyclic cohomology and spectral triples. Other topics include various other cohomology theories, holomorphic structures and noncommutative D-modules. A unique feature of the book is its constructive approach and its wealth of examples drawn from a large body of literature in mathematical physics, now put on a firm algebraic footing. Including exercises with solutions, it can be used as a textbook for advanced courses as well as a reference for researchers.
Book Synopsis Homological Mirror Symmetry by : Anton Kapustin
Download or read book Homological Mirror Symmetry written by Anton Kapustin and published by Springer Science & Business Media. This book was released on 2009 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: An ideal reference on the mathematical aspects of quantum field theory, this volume provides a set of lectures and reviews that both introduce and representatively review the state-of-the art in the field from different perspectives.
Book Synopsis Mathematical Topics Between Classical and Quantum Mechanics by : Nicholas P. Landsman
Download or read book Mathematical Topics Between Classical and Quantum Mechanics written by Nicholas P. Landsman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph draws on two traditions: the algebraic formulation of quantum mechanics as well as quantum field theory, and the geometric theory of classical mechanics. These are combined in a unified treatment of the theory of Poisson algebras of observables and pure state spaces with a transition probability, which leads on to a discussion of the theory of quantization and the classical limit from this perspective. A prototype of quantization comes from the analogy between the C*- algebra of a Lie groupoid and the Poisson algebra of the corresponding Lie algebroid. The parallel between reduction of symplectic manifolds in classical mechanics and induced representations of groups and C*- algebras in quantum mechanics plays an equally important role. Examples from physics include constrained quantization, curved spaces, magnetic monopoles, gauge theories, massless particles, and $theta$- vacua. Accessible to mathematicians with some prior knowledge of classical and quantum mechanics, and to mathematical physicists and theoretical physicists with some background in functional analysis.
Book Synopsis Recent Advances in Noncommutative Algebra and Geometry by : K. A. Brown
Download or read book Recent Advances in Noncommutative Algebra and Geometry written by K. A. Brown and published by American Mathematical Society. This book was released on 2024-05-30 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry, held from June 20–24, 2022, at the University of Washington, Seattle, in honor of S. Paul Smith's 65th birthday. The articles reflect the wide interests of Smith and provide researchers and graduate students with an indispensable overview of topics of current interest. Specific fields covered include: noncommutative algebraic geometry, representation theory, Hopf algebras and quantum groups, the elliptic algebras of Feigin and Odesskii, Calabi-Yau algebras, Artin-Schelter regular algebras, deformation theory, and Lie theory. In addition to original research contributions the volume includes an introductory essay reviewing Smith's research contributions in these fields, and several survey articles.
Author :Kenneth R. Davidson Publisher :American Mathematical Society, Fields Institute ISBN 13 :1470475081 Total Pages :325 pages Book Rating :4.4/5 (74 download)
Book Synopsis C*-Algebras by Example by : Kenneth R. Davidson
Download or read book C*-Algebras by Example written by Kenneth R. Davidson and published by American Mathematical Society, Fields Institute. This book was released on 2023-10-04 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of $K$-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty years has been based on a careful study of these special classes. While there are many books on C*-algebras and operator algebras available, this is the first one to attempt to explain the real examples that researchers use to test their hypotheses. Topics include AF algebras, Bunce–Deddens and Cuntz algebras, the Toeplitz algebra, irrational rotation algebras, group C*-algebras, discrete crossed products, abelian C*-algebras (spectral theory and approximate unitary equivalence) and extensions. It also introduces many modern concepts and results in the subject such as real rank zero algebras, topological stable rank, quasidiagonality, and various new constructions. These notes were compiled during the author's participation in the special year on C*-algebras at The Fields Institute for Research in Mathematical Sciences during the 1994–1995 academic year. The field of C*-algebras touches upon many other areas of mathematics such as group representations, dynamical systems, physics, $K$-theory, and topology. The variety of examples offered in this text expose the student to many of these connections. Graduate students with a solid course in functional analysis should be able to read this book. This should prepare them to read much of the current literature. This book is reasonably self-contained, and the author has provided results from other areas when necessary.
Book Synopsis Topics in Noncommutative Geometry by : Guillermo Cortiñas
Download or read book Topics in Noncommutative Geometry written by Guillermo Cortiñas and published by American Mathematical Soc.. This book was released on 2012 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Luis Santalo Winter Schools are organized yearly by the Mathematics Department and the Santalo Mathematical Research Institute of the School of Exact and Natural Sciences of the University of Buenos Aires (FCEN). This volume contains the proceedings of the third Luis Santalo Winter School which was devoted to noncommutative geometry and held at FCEN July 26-August 6, 2010. Topics in this volume concern noncommutative geometry in a broad sense, encompassing various mathematical and physical theories that incorporate geometric ideas to the study of noncommutative phenomena. It explores connections with several areas including algebra, analysis, geometry, topology and mathematical physics. Bursztyn and Waldmann discuss the classification of star products of Poisson structures up to Morita equivalence. Tsygan explains the connections between Kontsevich's formality theorem, noncommutative calculus, operads and index theory. Hoefel presents a concrete elementary construction in operad theory. Meyer introduces the subject of $\mathrm{C}^*$-algebraic crossed products. Rosenberg introduces Kasparov's $KK$-theory and noncommutative tori and includes a discussion of the Baum-Connes conjecture for $K$-theory of crossed products, among other topics. Lafont, Ortiz, and Sanchez-Garcia carry out a concrete computation in connection with the Baum-Connes conjecture. Zuk presents some remarkable groups produced by finite automata. Mesland discusses spectral triples and the Kasparov product in $KK$-theory. Trinchero explores the connections between Connes' noncommutative geometry and quantum field theory. Karoubi demonstrates a construction of twisted $K$-theory by means of twisted bundles. Tabuada surveys the theory of noncommutative motives.
Author :Jose M. Gracia-Bondia Publisher :Springer Science & Business Media ISBN 13 :1461200059 Total Pages :692 pages Book Rating :4.4/5 (612 download)
Book Synopsis Elements of Noncommutative Geometry by : Jose M. Gracia-Bondia
Download or read book Elements of Noncommutative Geometry written by Jose M. Gracia-Bondia and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Noncommutative Differential Geometry and Its Applications to Physics by : Yoshiaki Maeda
Download or read book Noncommutative Differential Geometry and Its Applications to Physics written by Yoshiaki Maeda and published by Springer Science & Business Media. This book was released on 2001-03-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative differential geometry is a new approach to classical geometry. It was originally used by Fields Medalist A. Connes in the theory of foliations, where it led to striking extensions of Atiyah-Singer index theory. It also may be applicable to hitherto unsolved geometric phenomena and physical experiments. However, noncommutative differential geometry was not well understood even among mathematicians. Therefore, an international symposium on commutative differential geometry and its applications to physics was held in Japan, in July 1999. Topics covered included: deformation problems, Poisson groupoids, operad theory, quantization problems, and D-branes. The meeting was attended by both mathematicians and physicists, which resulted in interesting discussions. This volume contains the refereed proceedings of this symposium. Providing a state of the art overview of research in these topics, this book is suitable as a source book for a seminar in noncommutative geometry and physics.