Geometric Flows on Compact Manifolds

Download Geometric Flows on Compact Manifolds PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 138 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Geometric Flows on Compact Manifolds by : Lii-Perng Liou

Download or read book Geometric Flows on Compact Manifolds written by Lii-Perng Liou and published by . This book was released on 1996 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geodesic Flows

Download Geodesic Flows PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461216001
Total Pages : 160 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geodesic Flows by : Gabriel P. Paternain

Download or read book Geodesic Flows written by Gabriel P. Paternain and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane's formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank the referee for a very careful reading of the manuscript and for a large number of comments with corrections and suggestions for improvement.

Geodesic Flows on Closed Riemann Manifolds with Negative Curvature

Download Geodesic Flows on Closed Riemann Manifolds with Negative Curvature PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 442 pages
Book Rating : 4.:/5 (321 download)

DOWNLOAD NOW!


Book Synopsis Geodesic Flows on Closed Riemann Manifolds with Negative Curvature by : D. V. Anosov

Download or read book Geodesic Flows on Closed Riemann Manifolds with Negative Curvature written by D. V. Anosov and published by . This book was released on 1969 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Extrinsic Geometric Flows

Download Extrinsic Geometric Flows PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470464578
Total Pages : 790 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Extrinsic Geometric Flows by : Ben Andrews

Download or read book Extrinsic Geometric Flows written by Ben Andrews and published by American Mathematical Society. This book was released on 2022-03-02 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.

Geometric Flows and the Geometry of Space-time

Download Geometric Flows and the Geometry of Space-time PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030011267
Total Pages : 129 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Geometric Flows and the Geometry of Space-time by : Vicente Cortés

Download or read book Geometric Flows and the Geometry of Space-time written by Vicente Cortés and published by Springer. This book was released on 2018-12-05 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of two lecture notes on geometric flow equations (O. Schnürer) and Lorentzian geometry - holonomy, spinors and Cauchy Problems (H. Baum and T. Leistner) written by leading experts in these fields. It grew out of the summer school “Geometric flows and the geometry of space-time” held in Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics

Geometric Analysis of Quasilinear Inequalities on Complete Manifolds

Download Geometric Analysis of Quasilinear Inequalities on Complete Manifolds PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030627047
Total Pages : 291 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Geometric Analysis of Quasilinear Inequalities on Complete Manifolds by : Bruno Bianchini

Download or read book Geometric Analysis of Quasilinear Inequalities on Complete Manifolds written by Bruno Bianchini and published by Springer Nature. This book was released on 2021-01-18 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improvements.

Lectures and Surveys on G2-Manifolds and Related Topics

Download Lectures and Surveys on G2-Manifolds and Related Topics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1071605771
Total Pages : 392 pages
Book Rating : 4.0/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Lectures and Surveys on G2-Manifolds and Related Topics by : Spiro Karigiannis

Download or read book Lectures and Surveys on G2-Manifolds and Related Topics written by Spiro Karigiannis and published by Springer Nature. This book was released on 2020-05-26 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, one of the first on G2 manifolds in decades, collects introductory lectures and survey articles largely based on talks given at a workshop held at the Fields Institute in August 2017, as part of the major thematic program on geometric analysis. It provides an accessible introduction to various aspects of the geometry of G2 manifolds, including the construction of examples, as well as the intimate relations with calibrated geometry, Yang-Mills gauge theory, and geometric flows. It also features the inclusion of a survey on the new topological and analytic invariants of G2 manifolds that have been recently discovered. The first half of the book, consisting of several introductory lectures, is aimed at experienced graduate students or early career researchers in geometry and topology who wish to familiarize themselves with this burgeoning field. The second half, consisting of numerous survey articles, is intended to be useful to both beginners and experts in the field.

Lectures on Spaces of Nonpositive Curvature

Download Lectures on Spaces of Nonpositive Curvature PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034892403
Total Pages : 114 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Spaces of Nonpositive Curvature by : Werner Ballmann

Download or read book Lectures on Spaces of Nonpositive Curvature written by Werner Ballmann and published by Birkhäuser. This book was released on 2012-12-06 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.

Foliations and the Geometry of 3-Manifolds

Download Foliations and the Geometry of 3-Manifolds PDF Online Free

Author :
Publisher : Oxford University Press on Demand
ISBN 13 : 0198570082
Total Pages : 378 pages
Book Rating : 4.1/5 (985 download)

DOWNLOAD NOW!


Book Synopsis Foliations and the Geometry of 3-Manifolds by : Danny Calegari

Download or read book Foliations and the Geometry of 3-Manifolds written by Danny Calegari and published by Oxford University Press on Demand. This book was released on 2007-05-17 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.

Ricci Flow and the Poincare Conjecture

Download Ricci Flow and the Poincare Conjecture PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821843284
Total Pages : 586 pages
Book Rating : 4.8/5 (432 download)

DOWNLOAD NOW!


Book Synopsis Ricci Flow and the Poincare Conjecture by : John W. Morgan

Download or read book Ricci Flow and the Poincare Conjecture written by John W. Morgan and published by American Mathematical Soc.. This book was released on 2007 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute's seven Millennium Prize Problems. in 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman's three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton's work. The second part starts with Perelman's length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation. The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman's third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjectu The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston's Geometrization Conjecture. Thurston's Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. in addition, the fourth part is a much-expanded version of Perelman's third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series The Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

Geometry and Topology of Manifolds: Surfaces and Beyond

Download Geometry and Topology of Manifolds: Surfaces and Beyond PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470461323
Total Pages : 408 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Topology of Manifolds: Surfaces and Beyond by : Vicente Muñoz

Download or read book Geometry and Topology of Manifolds: Surfaces and Beyond written by Vicente Muñoz and published by American Mathematical Soc.. This book was released on 2020-10-21 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.

The Ricci Flow

Download The Ricci Flow PDF Online Free

Author :
Publisher : American Mathematical Society(RI)
ISBN 13 : 9781470413620
Total Pages : 562 pages
Book Rating : 4.4/5 (136 download)

DOWNLOAD NOW!


Book Synopsis The Ricci Flow by : Bennett Chow

Download or read book The Ricci Flow written by Bennett Chow and published by American Mathematical Society(RI). This book was released on 2007 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric analysis has become one of the most important tools in geometry and topology. In their books on the Ricci flow, the authors reveal the depth and breadth of this flow method for understanding the structure of manifolds. With the present book, the authors focus on the analytic aspects of Ricci flow.

Complex Non-Kähler Geometry

Download Complex Non-Kähler Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030258831
Total Pages : 256 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Complex Non-Kähler Geometry by : Sławomir Dinew

Download or read book Complex Non-Kähler Geometry written by Sławomir Dinew and published by Springer Nature. This book was released on 2019-11-05 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds. The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and Sławomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry.

Variational Problems in Riemannian Geometry

Download Variational Problems in Riemannian Geometry PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034879687
Total Pages : 158 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Variational Problems in Riemannian Geometry by : Paul Baird

Download or read book Variational Problems in Riemannian Geometry written by Paul Baird and published by Birkhäuser. This book was released on 2012-12-06 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects invited contributions by specialists in the domain of elliptic partial differential equations and geometric flows. There are introductory survey articles as well as papers presenting the latest research results. Among the topics covered are blow-up theory for second order elliptic equations; bubbling phenomena in the harmonic map heat flow; applications of scans and fractional power integrands; heat flow for the p-energy functional; Ricci flow and evolution by curvature of networks of curves in the plane.

The Ricci Flow in Riemannian Geometry

Download The Ricci Flow in Riemannian Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642162851
Total Pages : 306 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis The Ricci Flow in Riemannian Geometry by : Ben Andrews

Download or read book The Ricci Flow in Riemannian Geometry written by Ben Andrews and published by Springer Science & Business Media. This book was released on 2011 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.

Riemannian Geometry of Contact and Symplectic Manifolds

Download Riemannian Geometry of Contact and Symplectic Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475736045
Total Pages : 263 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Riemannian Geometry of Contact and Symplectic Manifolds by : David E. Blair

Download or read book Riemannian Geometry of Contact and Symplectic Manifolds written by David E. Blair and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book endorsed by the Sunyer Prize Committee (A. Weinstein, J. Oesterle et. al.).

Geometry, Algebra and Applications: From Mechanics to Cryptography

Download Geometry, Algebra and Applications: From Mechanics to Cryptography PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319320858
Total Pages : 203 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Geometry, Algebra and Applications: From Mechanics to Cryptography by : Marco Castrillón López

Download or read book Geometry, Algebra and Applications: From Mechanics to Cryptography written by Marco Castrillón López and published by Springer. This book was released on 2016-06-30 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects contributions written by different experts in honor of Prof. Jaime Muñoz Masqué. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.