Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Genetic Algorithms And Fuzzy Multiobjective Optimization
Download Genetic Algorithms And Fuzzy Multiobjective Optimization full books in PDF, epub, and Kindle. Read online Genetic Algorithms And Fuzzy Multiobjective Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Genetic Algorithms and Fuzzy Multiobjective Optimization by : Masatoshi Sakawa
Download or read book Genetic Algorithms and Fuzzy Multiobjective Optimization written by Masatoshi Sakawa and published by Springer Science & Business Media. This book was released on 2002 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.
Book Synopsis Genetic Algorithms and Fuzzy Multiobjective Optimization by : Masatoshi Sakawa
Download or read book Genetic Algorithms and Fuzzy Multiobjective Optimization written by Masatoshi Sakawa and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.
Book Synopsis Genetic Algorithms and Engineering Optimization by : Mitsuo Gen
Download or read book Genetic Algorithms and Engineering Optimization written by Mitsuo Gen and published by John Wiley & Sons. This book was released on 1999-12-28 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Im Mittelpunkt dieses Buches steht eines der wichtigsten Optimierungsverfahren der industriellen Ingenieurtechnik: Mit Hilfe genetischer Algorithmen lassen sich Qualität, Design und Zuverlässigkeit von Produkten entscheidend verbessern. Das Verfahren beruht auf der Wahrscheinlichkeitstheorie und lehnt sich an die Prinzipien der biologischen Vererbung an: Die Eigenschaften des Produkts werden, unter Beachtung der äußeren Randbedingungen, schrittweise optimiert. Ein hochaktueller Band international anerkannter Autoren. (03/00)
Book Synopsis Multiobjective Optimization by : Jürgen Branke
Download or read book Multiobjective Optimization written by Jürgen Branke and published by Springer. This book was released on 2008-10-18 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.
Book Synopsis Evolutionary Algorithms for Solving Multi-Objective Problems by : Carlos Coello Coello
Download or read book Evolutionary Algorithms for Solving Multi-Objective Problems written by Carlos Coello Coello and published by Springer Science & Business Media. This book was released on 2007-08-26 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.
Book Synopsis Multi-Objective Optimization using Evolutionary Algorithms by : Kalyanmoy Deb
Download or read book Multi-Objective Optimization using Evolutionary Algorithms written by Kalyanmoy Deb and published by John Wiley & Sons. This book was released on 2001-07-05 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.
Book Synopsis Multi-Objective Optimization in Chemical Engineering by : Gade Pandu Rangaiah
Download or read book Multi-Objective Optimization in Chemical Engineering written by Gade Pandu Rangaiah and published by John Wiley & Sons. This book was released on 2013-03-20 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: For reasons both financial and environmental, there is a perpetual need to optimize the design and operating conditions of industrial process systems in order to improve their performance, energy efficiency, profitability, safety and reliability. However, with most chemical engineering application problems having many variables with complex inter-relationships, meeting these optimization objectives can be challenging. This is where Multi-Objective Optimization (MOO) is useful to find the optimal trade-offs among two or more conflicting objectives. This book provides an overview of the recent developments and applications of MOO for modeling, design and operation of chemical, petrochemical, pharmaceutical, energy and related processes. It then covers important theoretical and computational developments as well as specific applications such as metabolic reaction networks, chromatographic systems, CO2 emissions targeting for petroleum refining units, ecodesign of chemical processes, ethanol purification and cumene process design. Multi-Objective Optimization in Chemical Engineering: Developments and Applications is an invaluable resource for researchers and graduate students in chemical engineering as well as industrial practitioners and engineers involved in process design, modeling and optimization.
Book Synopsis Multi-Objective Machine Learning by : Yaochu Jin
Download or read book Multi-Objective Machine Learning written by Yaochu Jin and published by Springer Science & Business Media. This book was released on 2007-06-10 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems.
Book Synopsis Evolutionary Multi-Criterion Optimization by : Carlos Coello Coello
Download or read book Evolutionary Multi-Criterion Optimization written by Carlos Coello Coello and published by Springer. This book was released on 2005-01-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Evolutionary Multiobjective Optimization by : Ajith Abraham
Download or read book Evolutionary Multiobjective Optimization written by Ajith Abraham and published by Springer Science & Business Media. This book was released on 2005-09-05 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.
Book Synopsis Knowledge Incorporation in Evolutionary Computation by : Yaochu Jin
Download or read book Knowledge Incorporation in Evolutionary Computation written by Yaochu Jin and published by Springer. This book was released on 2013-04-22 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.
Book Synopsis Network Models and Optimization by : Mitsuo Gen
Download or read book Network Models and Optimization written by Mitsuo Gen and published by Springer Science & Business Media. This book was released on 2008-07-10 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: Network models are critical tools in business, management, science and industry. “Network Models and Optimization” presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. The book extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, traveling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. The book can be used both as a student textbook and as a professional reference for practitioners who use network optimization methods to model and solve problems.
Book Synopsis 2007 IEEE Congress on Evolutionary Computation by :
Download or read book 2007 IEEE Congress on Evolutionary Computation written by and published by . This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Soft Computing in Engineering Design and Manufacturing by : Pravir K. Chawdhry
Download or read book Soft Computing in Engineering Design and Manufacturing written by Pravir K. Chawdhry and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft Computing has emerged as an important approach towards achieving intelligent computational paradigms where key elements are learning from experience in the presence of uncertainties, fuzzy belief functioos, and ·evolutioo of the computing strategies of the learning agent itself. Fuzzy, neural and evolutionary computing are the three major themes of soft computing. The book presents original research papers dealing with the theory of soft computing and its applicatioos in engineering design and manufacturing. The methodologies have been applied to a large variety of real life problems. Applicatioo of soft computing has provided the opportunity to integrate human like 'vagueness' and real life 'uncertainty' to an otherwise 'hard' computer programme. Now, a computer programme can learn, adapt, and evolve using soft computing. The book identifies the strengths and Iimitatioos of soft cOOlputing techniques, particularly with reference to their engineering applications. The applications range fran design optimisatioo to scheduling and image analysis. Goal optimisatioo with incomplete infmnatioo and under uncertainty is the key to solving real-life problems in design and manufacturing. Soft computing techniques presented in this book address these issues. Computatiooal complexity and efficient implementatioo of these techniques are also major concerns for realising useful industrial applications of soft computing. The different parts in the book also address these issues. The book cootains 9 parts, 8 of which are based 00 papers fran the '2nd On-line World Conference 00 Soft Computing in Engineering Design and Manufacture (WSC2),.
Book Synopsis Genetic Algorithm Essentials by : Oliver Kramer
Download or read book Genetic Algorithm Essentials written by Oliver Kramer and published by Springer. This book was released on 2017-01-07 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
Book Synopsis Multi-state System Reliability: Assessment, Optimization And Applications by : Gregory Levitin
Download or read book Multi-state System Reliability: Assessment, Optimization And Applications written by Gregory Levitin and published by World Scientific Publishing Company. This book was released on 2003-03-12 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most books on reliability theory are devoted to traditional binary reliability models allowing for only two possible states for a system and its components: perfect functionality and complete failure. However, many real-world systems are composed of multi-state components, which have different performance levels and several failure modes with various effects on the entire system performance (degradation). Such systems are called Multi-State Systems (MSS). The examples of MSS are power systems where the component performance is characterized by the generating capacity, computer systems where the component performance is characterized by the data processing speed, communication systems, etc.This book is the first to be devoted to Multi-State System (MSS) reliability analysis and optimization. It provides a historical overview of the field, presents basic concepts of MSS, defines MSS reliability measures, and systematically describes the tools for MSS reliability assessment and optimization. Basic methods for MSS reliability assessment, such as a Boolean methods extension, basic random process methods (both Markov and semi-Markov) and universal generating function models, are systematically studied. A universal genetic algorithm optimization technique and all details of its application are described. All the methods are illustrated by numerical examples. The book also contains many examples of application of reliability assessment and optimization methods to real engineering problems.The aim of this book is to give a comprehensive, up-to-date presentation of MSS reliability theory based on modern advances in this field and provide a theoretical summary and examples of engineering applications to a variety of technical problems. From this point of view the book bridges the gap between theoretical advances and practical reliability engineering.
Book Synopsis Multiobjective Optimization by : Yann Collette
Download or read book Multiobjective Optimization written by Yann Collette and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers many multiobjective optimization methods accompanied by analytical examples, and it treats problems not only in engineering but also operations research and management. It explains how to choose the best method to solve a problem and uses three primary application examples: optimization of the numerical simulation of an industrial process; sizing of a telecommunication network; and decision-aid tools for the sorting of bids.