Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Generators And Relations In Groups And Geometries
Download Generators And Relations In Groups And Geometries full books in PDF, epub, and Kindle. Read online Generators And Relations In Groups And Geometries ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Generators and Relations in Groups and Geometries by : A. Barlotti
Download or read book Generators and Relations in Groups and Geometries written by A. Barlotti and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every group is represented in many ways as an epimorphic image of a free group. It seems therefore futile to search for methods involving generators and relations which can be used to detect the structure of a group. Nevertheless, results in the indicated direction exist. The clue is to ask the right question. Classical geometry is a typical example in which the factorization of a motion into reflections or, more generally, of a collineation into central collineations, supplies valuable information on the geometric and algebraic structure. This mode of investigation has gained momentum since the end of last century. The tradition of geometric-algebraic interplay brought forward two branches of research which are documented in Parts I and II of these Proceedings. Part II deals with the theory of reflection geometry which culminated in Bachmann's work where the geometric information is encoded in properties of the group of motions expressed by relations in the generating involutions. This approach is the backbone of the classification of motion groups for the classical unitary and orthogonal planes. The axioms in this char acterization are natural and plausible. They provoke the study of consequences of subsets of axioms which also yield natural geometries whose exploration is rewarding. Bachmann's central axiom is the three reflection theorem, showing that the number of reflections needed to express a motion is of great importance.
Book Synopsis Geometry of Lie Groups by : B. Rosenfeld
Download or read book Geometry of Lie Groups written by B. Rosenfeld and published by Springer Science & Business Media. This book was released on 1997-02-28 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.
Book Synopsis Combinatorial Group Theory by : Wilhelm Magnus
Download or read book Combinatorial Group Theory written by Wilhelm Magnus and published by Courier Corporation. This book was released on 2004-01-01 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This seminal, much-cited account begins with a fairly elementary exposition of basic concepts and a discussion of factor groups and subgroups. The topics of Nielsen transformations, free and amalgamated products, and commutator calculus receive detailed treatment. The concluding chapter surveys word, conjugacy, and related problems; adjunction and embedding problems; and more. Second, revised 1976 edition.
Book Synopsis Groups, Graphs and Trees by : John Meier
Download or read book Groups, Graphs and Trees written by John Meier and published by Cambridge University Press. This book was released on 2008-07-31 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This outstanding new book presents the modern, geometric approach to group theory, in an accessible and engaging approach to the subject. Topics include group actions, the construction of Cayley graphs, and connections to formal language theory and geometry. Theorems are balanced by specific examples such as Baumslag-Solitar groups, the Lamplighter group and Thompson's group. Only exposure to undergraduate-level abstract algebra is presumed, and from that base the core techniques and theorems are developed and recent research is explored. Exercises and figures throughout the text encourage the development of geometric intuition. Ideal for advanced undergraduates looking to deepen their understanding of groups, this book will also be of interest to graduate students and researchers as a gentle introduction to geometric group theory.
Book Synopsis The Geometry and Topology of Coxeter Groups by : Michael Davis
Download or read book The Geometry and Topology of Coxeter Groups written by Michael Davis and published by Princeton University Press. This book was released on 2008 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Book Synopsis Office Hours with a Geometric Group Theorist by : Matt Clay
Download or read book Office Hours with a Geometric Group Theorist written by Matt Clay and published by Princeton University Press. This book was released on 2017-07-11 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples. Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.
Download or read book History of Topology written by I.M. James and published by Elsevier. This book was released on 1999-08-24 with total page 1067 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topology, for many years, has been one of the most exciting and influential fields of research in modern mathematics. Although its origins may be traced back several hundred years, it was Poincaré who "gave topology wings" in a classic series of articles published around the turn of the century. While the earlier history, sometimes called the prehistory, is also considered, this volume is mainly concerned with the more recent history of topology, from Poincaré onwards.As will be seen from the list of contents the articles cover a wide range of topics. Some are more technical than others, but the reader without a great deal of technical knowledge should still find most of the articles accessible. Some are written by professional historians of mathematics, others by historically-minded mathematicians, who tend to have a different viewpoint.
Book Synopsis Geometry and Cohomology in Group Theory by : Peter H. Kropholler
Download or read book Geometry and Cohomology in Group Theory written by Peter H. Kropholler and published by Cambridge University Press. This book was released on 1998-05-14 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reflects the fruitful connections between group theory and topology. It contains articles on cohomology, representation theory, geometric and combinatorial group theory. Some of the world's best known figures in this very active area of mathematics have made contributions, including substantial articles from Ol'shanskii, Mikhajlovskii, Carlson, Benson, Linnell, Wilson and Grigorchuk, which will be valuable reference works for some years to come. Pure mathematicians working in the fields of algebra, topology, and their interactions, will find this book of great interest.
Book Synopsis From Groups to Geometry and Back by : Vaughn Climenhaga
Download or read book From Groups to Geometry and Back written by Vaughn Climenhaga and published by American Mathematical Soc.. This book was released on 2017-04-07 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Groups arise naturally as symmetries of geometric objects, and so groups can be used to understand geometry and topology. Conversely, one can study abstract groups by using geometric techniques and ultimately by treating groups themselves as geometric objects. This book explores these connections between group theory and geometry, introducing some of the main ideas of transformation groups, algebraic topology, and geometric group theory. The first half of the book introduces basic notions of group theory and studies symmetry groups in various geometries, including Euclidean, projective, and hyperbolic. The classification of Euclidean isometries leads to results on regular polyhedra and polytopes; the study of symmetry groups using matrices leads to Lie groups and Lie algebras. The second half of the book explores ideas from algebraic topology and geometric group theory. The fundamental group appears as yet another group associated to a geometric object and turns out to be a symmetry group using covering spaces and deck transformations. In the other direction, Cayley graphs, planar models, and fundamental domains appear as geometric objects associated to groups. The final chapter discusses groups themselves as geometric objects, including a gentle introduction to Gromov's theorem on polynomial growth and Grigorchuk's example of intermediate growth. The book is accessible to undergraduate students (and anyone else) with a background in calculus, linear algebra, and basic real analysis, including topological notions of convergence and connectedness. This book is a result of the MASS course in algebra at Penn State University in the fall semester of 2009.
Book Synopsis Groups, Combinatorics and Geometry by : Martin W. Liebeck
Download or read book Groups, Combinatorics and Geometry written by Martin W. Liebeck and published by Cambridge University Press. This book was released on 1992-09-10 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of papers on the subject of the classification of finite simple groups.
Book Synopsis Topics in Combinatorial Group Theory by : Gilbert Baumslag
Download or read book Topics in Combinatorial Group Theory written by Gilbert Baumslag and published by Springer Science & Business Media. This book was released on 1993-09-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial group theory is a loosely defined subject, with close connections to topology and logic. With surprising frequency, problems in a wide variety of disciplines, including differential equations, automorphic functions and geometry, have been distilled into explicit questions about groups, typically of the following kind: Are the groups in a given class finite (e.g., the Burnside problem)? Finitely generated? Finitely presented? What are the conjugates of a given element in a given group? What are the subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given class whether they are isomorphic or not? The objective of combinatorial group theory is the systematic development of algebraic techniques to settle such questions. In view of the scope of the subject and the extraordinary variety of groups involved, it is not surprising that no really general theory exists. These notes, bridging the very beginning of the theory to new results and developments, are devoted to a number of topics in combinatorial group theory and serve as an introduction to the subject on the graduate level.
Book Synopsis Geometry, Groups and Dynamics by : C. S. Aravinda
Download or read book Geometry, Groups and Dynamics written by C. S. Aravinda and published by American Mathematical Soc.. This book was released on 2015-05-01 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the ICTS Program: Groups, Geometry and Dynamics, held December 3-16, 2012, at CEMS, Almora, India. The activity was an academic tribute to Ravi S. Kulkarni on his turning seventy. Articles included in this volume, both introductory and advanced surveys, represent the broad area of geometry that encompasses a large portion of group theory (finite or otherwise) and dynamics in its proximity. These areas have been influenced by Kulkarni's ideas and are closely related to his work and contribution.
Book Synopsis Combinatorial Group Theory and Applications to Geometry by : D.J. Collins
Download or read book Combinatorial Group Theory and Applications to Geometry written by D.J. Collins and published by Springer Science & Business Media. This book was released on 1998-03-17 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "... The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail. Both articles give comprehensive bibliographies, so that it is possible to use this book as the starting point for a more detailed study of a particular topic of interest. ..." Bulletin of the London Mathematical Society, 1996
Book Synopsis Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory by : Paul Gregory Goerss
Download or read book Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory written by Paul Gregory Goerss and published by American Mathematical Soc.. This book was released on 2004 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of its series of Emphasis Years in Mathematics, Northwestern University hosted an International Conference on Algebraic Topology. The purpose of the conference was to develop new connections between homotopy theory and other areas of mathematics. This proceedings volume grew out of that event. Topics discussed include algebraic geometry, cohomology of groups, algebraic $K$-theory, and $\mathbb{A 1$ homotopy theory. Among the contributors to the volume were Alejandro Adem,Ralph L. Cohen, Jean-Louis Loday, and many others. The book is suitable for graduate students and research mathematicians interested in homotopy theory and its relationship to other areas of mathematics.
Book Synopsis Ring Theory And Algebraic Geometry by : A. Granja
Download or read book Ring Theory And Algebraic Geometry written by A. Granja and published by CRC Press. This book was released on 2001-05-08 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on the interaction between algebra and algebraic geometry, including high-level research papers and surveys contributed by over 40 top specialists representing more than 15 countries worldwide. Describes abelian groups and lattices, algebras and binomial ideals, cones and fans, affine and projective algebraic varieties, simplicial and cellular complexes, polytopes, and arithmetics.
Book Synopsis Integrability and Nonintegrability in Geometry and Mechanics by : A.T. Fomenko
Download or read book Integrability and Nonintegrability in Geometry and Mechanics written by A.T. Fomenko and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. 1hen one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin' . • 1111 Oulik'. n. . Chi" •. • ~ Mm~ Mu,d. ", Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Book Synopsis Geometry and Discrete Mathematics by : Benjamin Fine
Download or read book Geometry and Discrete Mathematics written by Benjamin Fine and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-08-22 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the two-volume set ‘A Selection of Highlights’ we present basics of mathematics in an exciting and pedagogically sound way. This volume examines many fundamental results in Geometry and Discrete Mathematics along with their proofs and their history. In the second edition we include a new chapter on Topological Data Analysis and enhanced the chapter on Graph Theory for solving further classical problems such as the Traveling Salesman Problem.